Original Articles
Ahluwalia O., P.C. Singh, and R. Bhatia 2021, A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain 5:100032.
10.1016/j.resenv.2021.100032Badr A., H.H. El-Shazly, R.A. Tarawneh, and A. Börner 2020, Screening for drought tolerance in Maize (Zea mays L.) Germplasm using germination and seedling traits under simulated drought conditions. Plant 9:565.
10.3390/plants905056532365550PMC7284379Bao X., X. Hou, W. Duan, B. Yin, J. Ren, Y. Wang, X. Liu, L. Gu, and W. Zhen 2023, Screening and evaluation of drought resistance traits of winter wheat in the north China plain. Front. Plant Sci 14:1194759. doi:10.3389/fpls.2023.1194759
10.3389/fpls.2023.119475937396647PMC10313073Bhugra S., A. Anupama, S. Chaudhury, B. Lall, and A. Chugh 2017, Multi-modal image analysis for plant stress phenotyping. National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics. In R. Rameshan et al. (Eds.), NCVPRIPG 2017, CCIS 841:269-280. doi:10.1007/978-981-13-0020-2_24
10.1007/978-981-13-0020-2_24Bock C.H., G.H. Poole, P.E. Parker, and T.R. Gottwald 2010, Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences 29:59-107.
10.1080/07352681003617285Briglia N., G. Montanaro, A. Petrozza, S. Summerer, F. Cellini, and V. Nuzzo 2019, Drought phenotyping in Vitis vinifera using RGB and NIR imaging. Sci Hort 256:108555.
10.1016/j.scienta.2019.108555Chaves M.M., J.P. Maroco, and J.S. Pereira 2003. Understanding plant responses to drought- from genes to the whole plant. Functional Plant Biology 29:239-264.
10.1071/FP0207632689007Chen D., K. Neumann, S. Friedel, B. Kilian, M. Chen, T. Altmann, and C. Klukas 2014, Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. The Plant Cell 26:4636-4655.
10.1105/tpc.114.12960125501589PMC4311194Correia P.M.P., J.C. Westergaard, A.B. da Silva, T. Roitsch, E. Carmo-Silva, and J.M. da Silva 2022, High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. J of Experimental Botany 73:5235-5251.
10.1093/jxb/erac16035446418PMC9440435Duan L., J. Han, Z. Guo, H. Tu, P. Yang, D. Zhang, Y. Fan, G. Chen, L. Xiong, M. Dai, K. Williams, F. Corke, J.H. Doonan, and W. Yang 2018, Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front. Plant Science 9:492. doi:10.3389/fpls.2018.00492
10.3389/fpls.2018.0049229719548PMC5913589Flexas J., J. Bota, F. Loreto, G. Cornic, and T.D. Sharkey 2004, Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology 6:269-279.
10.1055/s-2004-82086715143435Furbank R.T., and M. Tester. 2011, Phenomics-technologies to relieve the phenotyping bottleneck. Trends in Plant Science 16:635-644.
10.1016/j.tplants.2011.09.00522074787Guo X., Y. Qiu, D. Nettleton, and P.S. Schnable 2023, High-throughput field plant phenotyping: A self-supervised sequential CNN method to segment overlapping plants. Plant Phenomincs 5:0052. doi:10.34133/plantphenomics.0052
10.34133/plantphenomics.005237213545PMC10194366Jang Y., J. Kim, J. Lee, S. Lee, H. Jung, and G. Park 2024, Drought tolerance evaluation and growth response of Chinese Cabbage seedlings to water deficit treatment. Agronomy 14:279.
10.3390/agronomy14020279Jones H.G., R. Serraj, B.R. Loveys, L. Xiong, A. Wheaton, and A.H. Price 2009, Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology 36:978-989.
10.1071/FP0912332688709Kim S.L., N. Kim, H. Lee, E. Lee, K. Cheon, M. Kim, J. Baek, I. Choi, H. Ji, I.S. Yoon, K. Jung, T. Kwon, and K. Kim 2020, High‑throughput phenotyping platform for analyzing drought tolerance in rice. Planta 252:38. doi:10.1007/s00425-020-03436-9
10.1007/s00425-020-03436-932779032PMC7417419Kumaratenna K.P.S., and Y. Cho 2024, The leaf disease classification using artificial intelligence (AI) models. J of Bio-Envrion Cont 33:1-11.
10.12791/KSBEC.2024.33.1.001Kuo C.G., B.J. Shen, H.C. Chen, and R.T. Opeña 1988, Associations between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica 39:65-73.
10.1007/BF00025113Lawlor D.W., and G. Cornic 2002, Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment 25: 275-294.
10.1046/j.0016-8025.2001.00814.x11841670Li L., Q. Zhang, and D. Huang 2014, A review of imaging techniques for plant phenotyping. Sensors 14:20078-20111.
10.3390/s14112007825347588PMC4279472Liang H., Y. Zhou, Y. Lu, S. Pei, D. Xu, Z. Lu, W. Yao, Q. Liu, L. Yu, and H. Li 2024, Evaluation of soybean drought tolerance using multi-modal data from an unmanned aerial vehicle and machine learning. Remote Sens. 16:2043. doi:10.3390/rs16112043
10.3390/rs16112043Marchin R.M., A. Ossola, M.R. Leishman, and D.S. Ellsworth 2020, A simple method for simulating drought effects of plants. Front Plant Sci 10:1715. doi:10.3389/fpls.2019.01715
10.3389/fpls.2019.0171532038685PMC6985571Meeks M., Murray, S.C., Hague, and S., Hays, D 2013, Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 3:135-147.
10.3390/agronomy3010135Mertens S., L. Verbraeken, H. Sprenger, S. De Meyer, K. Demuynck, B. Cannoot, J. Merchie, J. De Block, J.T. Vogel, W. Bruce, H. Nelissen, S. Maere, D. Inzé, and N. Wuyts 2023, Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform. Plant Methods 19:132. doi:10.1186/s13007-023-01102-1
10.1186/s13007-023-01102-137996870PMC10668392Mishra P., R. Sadeh, M. Ryckewaert, E. Bino, G. Polder, M.P. Boer, D.N. Rutledge, and I. Herrmann 2021, A generic workflow combining deep learning and chemometrics for processing close-range spectral images to detect drought stress in Arabidopsis thaliana to support digital phenotyping. Chemometrics and Intellegent Laboratory Systems 216:104373.
10.1016/j.chemolab.2021.104373Pinho I.V., J.C. Souza, R.C. Vasconcellos, D.P. Vaz-Tostes, D.R. Vilela, and W.V. Pereira 2024, Germination under stress simulation and image analysis as tools for water deficit phenotyping of maize. J. of Seed Science 46:e202446011.
10.1590/2317-1545v46282636Rural Development Administration (RDA). 2019, Kimchi Cabbage Cultivation (The Textbook for Farming No. 128). RDA: Jeonju, Korea.
Shawon R.A., B.S. Kang, S.G. Lee, S.K. Kim, H.J. Lee, E. Katrich, S. Gorinstein, and Y.G. Ku 2020, Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem 308:125657.
10.1016/j.foodchem.2019.12565731669950Walsh J.J., E. Mangina, and S. Negrão 2024, Advancements in imaging sensors and AI for plant stress detection: A systematic literature review. Plant phenomics 6:0153 doi:10. 34133/plantphenomics.0153.
10.34133/plantphenomics.015338435466PMC10905704Wang X., X. Li, W. Hou, X., Hou, and S. Dong 2024, Current views of drought research: experimental methods, adaptation mechanism and regulatory strategies. Front Plant Sci 15:1371898. doi:10.3389/fpls.2024.1371895
10.3389/fpls.2024.137189538638344PMC11024477- Publisher :The Korean Society for Bio-Environment Control
- Publisher(Ko) :(사)한국생물환경조절학회
- Journal Title :Journal of Bio-Environment Control
- Journal Title(Ko) :생물환경조절학회지
- Volume : 33
- No :4
- Pages :189-199
- Received Date : 2024-07-05
- Revised Date : 2024-08-29
- Accepted Date : 2024-09-09
- DOI :https://doi.org/10.12791/KSBEC.2024.33.4.189