All Issue

2024 Vol.33, Issue 4 Preview Page

Original Articles

31 October 2024. pp. 189-199
Abstract
References
1

Ahluwalia O., P.C. Singh, and R. Bhatia 2021, A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain 5:100032.

10.1016/j.resenv.2021.100032
2

Badr A., H.H. El-Shazly, R.A. Tarawneh, and A. Börner 2020, Screening for drought tolerance in Maize (Zea mays L.) Germplasm using germination and seedling traits under simulated drought conditions. Plant 9:565.

10.3390/plants905056532365550PMC7284379
3

Bao X., X. Hou, W. Duan, B. Yin, J. Ren, Y. Wang, X. Liu, L. Gu, and W. Zhen 2023, Screening and evaluation of drought resistance traits of winter wheat in the north China plain. Front. Plant Sci 14:1194759. doi:10.3389/fpls.2023.1194759

10.3389/fpls.2023.119475937396647PMC10313073
4

Bhugra S., A. Anupama, S. Chaudhury, B. Lall, and A. Chugh 2017, Multi-modal image analysis for plant stress phenotyping. National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics. In R. Rameshan et al. (Eds.), NCVPRIPG 2017, CCIS 841:269-280. doi:10.1007/978-981-13-0020-2_24

10.1007/978-981-13-0020-2_24
5

Bock C.H., G.H. Poole, P.E. Parker, and T.R. Gottwald 2010, Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences 29:59-107.

10.1080/07352681003617285
6

Briglia N., G. Montanaro, A. Petrozza, S. Summerer, F. Cellini, and V. Nuzzo 2019, Drought phenotyping in Vitis vinifera using RGB and NIR imaging. Sci Hort 256:108555.

10.1016/j.scienta.2019.108555
7

Chaves M.M., J.P. Maroco, and J.S. Pereira 2003. Understanding plant responses to drought- from genes to the whole plant. Functional Plant Biology 29:239-264.

10.1071/FP0207632689007
8

Chen D., K. Neumann, S. Friedel, B. Kilian, M. Chen, T. Altmann, and C. Klukas 2014, Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. The Plant Cell 26:4636-4655.

10.1105/tpc.114.12960125501589PMC4311194
9

Correia P.M.P., J.C. Westergaard, A.B. da Silva, T. Roitsch, E. Carmo-Silva, and J.M. da Silva 2022, High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. J of Experimental Botany 73:5235-5251.

10.1093/jxb/erac16035446418PMC9440435
10

Duan L., J. Han, Z. Guo, H. Tu, P. Yang, D. Zhang, Y. Fan, G. Chen, L. Xiong, M. Dai, K. Williams, F. Corke, J.H. Doonan, and W. Yang 2018, Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front. Plant Science 9:492. doi:10.3389/fpls.2018.00492

10.3389/fpls.2018.0049229719548PMC5913589
11

Flexas J., J. Bota, F. Loreto, G. Cornic, and T.D. Sharkey 2004, Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology 6:269-279.

10.1055/s-2004-82086715143435
12

Furbank R.T., and M. Tester. 2011, Phenomics-technologies to relieve the phenotyping bottleneck. Trends in Plant Science 16:635-644.

10.1016/j.tplants.2011.09.00522074787
13

Guo X., Y. Qiu, D. Nettleton, and P.S. Schnable 2023, High-throughput field plant phenotyping: A self-supervised sequential CNN method to segment overlapping plants. Plant Phenomincs 5:0052. doi:10.34133/plantphenomics.0052

10.34133/plantphenomics.005237213545PMC10194366
14

Jang Y., J. Kim, J. Lee, S. Lee, H. Jung, and G. Park 2024, Drought tolerance evaluation and growth response of Chinese Cabbage seedlings to water deficit treatment. Agronomy 14:279.

10.3390/agronomy14020279
15

Jones H.G., R. Serraj, B.R. Loveys, L. Xiong, A. Wheaton, and A.H. Price 2009, Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology 36:978-989.

10.1071/FP0912332688709
16

Kim S.L., N. Kim, H. Lee, E. Lee, K. Cheon, M. Kim, J. Baek, I. Choi, H. Ji, I.S. Yoon, K. Jung, T. Kwon, and K. Kim 2020, High‑throughput phenotyping platform for analyzing drought tolerance in rice. Planta 252:38. doi:10.1007/s00425-020-03436-9

10.1007/s00425-020-03436-932779032PMC7417419
17

Kumaratenna K.P.S., and Y. Cho 2024, The leaf disease classification using artificial intelligence (AI) models. J of Bio-Envrion Cont 33:1-11.

10.12791/KSBEC.2024.33.1.001
18

Kuo C.G., B.J. Shen, H.C. Chen, and R.T. Opeña 1988, Associations between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica 39:65-73.

10.1007/BF00025113
19

Lawlor D.W., and G. Cornic 2002, Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment 25: 275-294.

10.1046/j.0016-8025.2001.00814.x11841670
20

Li L., Q. Zhang, and D. Huang 2014, A review of imaging techniques for plant phenotyping. Sensors 14:20078-20111.

10.3390/s14112007825347588PMC4279472
21

Liang H., Y. Zhou, Y. Lu, S. Pei, D. Xu, Z. Lu, W. Yao, Q. Liu, L. Yu, and H. Li 2024, Evaluation of soybean drought tolerance using multi-modal data from an unmanned aerial vehicle and machine learning. Remote Sens. 16:2043. doi:10.3390/rs16112043

10.3390/rs16112043
22

Marchin R.M., A. Ossola, M.R. Leishman, and D.S. Ellsworth 2020, A simple method for simulating drought effects of plants. Front Plant Sci 10:1715. doi:10.3389/fpls.2019.01715

10.3389/fpls.2019.0171532038685PMC6985571
23

Meeks M., Murray, S.C., Hague, and S., Hays, D 2013, Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 3:135-147.

10.3390/agronomy3010135
24

Mertens S., L. Verbraeken, H. Sprenger, S. De Meyer, K. Demuynck, B. Cannoot, J. Merchie, J. De Block, J.T. Vogel, W. Bruce, H. Nelissen, S. Maere, D. Inzé, and N. Wuyts 2023, Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform. Plant Methods 19:132. doi:10.1186/s13007-023-01102-1

10.1186/s13007-023-01102-137996870PMC10668392
25

Mishra P., R. Sadeh, M. Ryckewaert, E. Bino, G. Polder, M.P. Boer, D.N. Rutledge, and I. Herrmann 2021, A generic workflow combining deep learning and chemometrics for processing close-range spectral images to detect drought stress in Arabidopsis thaliana to support digital phenotyping. Chemometrics and Intellegent Laboratory Systems 216:104373.

10.1016/j.chemolab.2021.104373
26

Pinho I.V., J.C. Souza, R.C. Vasconcellos, D.P. Vaz-Tostes, D.R. Vilela, and W.V. Pereira 2024, Germination under stress simulation and image analysis as tools for water deficit phenotyping of maize. J. of Seed Science 46:e202446011.

10.1590/2317-1545v46282636
27

Rural Development Administration (RDA). 2019, Kimchi Cabbage Cultivation (The Textbook for Farming No. 128). RDA: Jeonju, Korea.

28

Shawon R.A., B.S. Kang, S.G. Lee, S.K. Kim, H.J. Lee, E. Katrich, S. Gorinstein, and Y.G. Ku 2020, Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem 308:125657.

10.1016/j.foodchem.2019.12565731669950
29

Walsh J.J., E. Mangina, and S. Negrão 2024, Advancements in imaging sensors and AI for plant stress detection: A systematic literature review. Plant phenomics 6:0153 doi:10. 34133/plantphenomics.0153.

10.34133/plantphenomics.015338435466PMC10905704
30

Wang X., X. Li, W. Hou, X., Hou, and S. Dong 2024, Current views of drought research: experimental methods, adaptation mechanism and regulatory strategies. Front Plant Sci 15:1371898. doi:10.3389/fpls.2024.1371895

10.3389/fpls.2024.137189538638344PMC11024477
31

Yoon S., M. Shin, J.H. Kim, H.J. Jeong, J. Park, and T.I. Ahn 2024, Computer Vision Approach for Phenotypic Characterization of Horticultural Crops. J of Bio-Environ Cont 33:63-70.

10.12791/KSBEC.2024.33.1.063
32

Zu X., Y. Lu, Q, Wang, P. Chu, W. Miao, H. Wang, and H. La 2017, A new method for evaluation the drought tolerance of upland rice cultivars. The Crop J 488-498. doi:10.1016/j.cj.2017.05.002

10.1016/j.cj.2017.05.002
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 33
  • No :4
  • Pages :189-199
  • Received Date : 2024-07-05
  • Revised Date : 2024-08-29
  • Accepted Date : 2024-09-09