All Issue

2024 Vol.33, Issue 4

Original Articles

31 October 2024. pp. 179-188
Abstract
References
1

An J.H., S.H. Jeon, M.H. Lee, D.C. Jang, E.Y. Choi, J.K. Na, and K.Y. Choi 2021a, Effect of soil irrigation starting point using tensiometer on growth and water use of cucumber in greenhouse. Hortic Sci Technol 39:232-242. doi:10.7235/HORT.20210021

10.7235/HORT.20210021
2

An J.H., S.H. Jeon, E.Y. Choi, H.M. Kang, J.K. Na, and K.Y. Choi 2021b, Effect of irrigation starting point of soil on chlorophyll fluorescence, stem sap flux relative rate and leaf temperature of cucumber in greenhouse. J Bio Env Con 30:46-55. doi:10.12791/KSBEC.2021.30.1.046

10.12791/KSBEC.2021.30.1.046
3

Appenroth K.J., J. Stöckel, A. Srivastava, and R.J. Strasser 2001, Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. EnvironPollut 115:49-64. doi:10.1016/S0269-7491(01)00091-4

10.1016/S0269-7491(01)00091-411586773
4

Bengough A.G., M.F. Bransby, J. Hans, S.J. McKenna, T.J. Roberts, and T.A. Valentine 2006, Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437-447. doi:10.1093/jxb/erj003

10.1093/jxb/erj00316317041
5

Bian Z., N. Jiang, S. Grundy, and C. Lu 2017, Uncovering LED light effects on plant growth: New angles and perspectives-LED light for improving plant growth, nutrition and energy-use efficiency. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227 (pp 491-498). doi:10.17660/ActaHortic.2018.1227.61

10.17660/ActaHortic.2018.1227.61
6

Cho Y.Y., S. Oh, M.M. Oh, and J.E. Son 2007, Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci Hortic 111:330-334. doi:10.1016/j.scienta.2006.12.028

10.1016/j.scienta.2006.12.028
7

Choi K.Y., M.R.A. Shawon, J.K. Kim, Y.J. Yoon, S.J. Park, and J.K. Na 2022, Effect of white LED light on the growth of apple seedlings in controlled environment system. Horticulturae 8:692. doi:10.3390/horticulturae8080692

10.3390/horticulturae8080692
8

Ciganda V.S., A.A. Gitelson, and J. Schepers 2012, How deep does a remote sensor sense? Expression of chlorophyll content in a maize canopy. Remote Sens Environ 126:240-247. doi:10.1016/j.rse.2012.08.019

10.1016/j.rse.2012.08.019
9

Cui J., S. Song, J. Yu, and H. Liu 2021, Effect of daily light integral on cucumber plug seedlings in artificial light plant factory. Horticulturae 7:139. doi:10.3390/horticulturae7060139

10.3390/horticulturae7060139
10

Di Mola I., S. Conti, E. Cozzolino, G. Melchionna, L. Ottaiano, A. Testa, L. Sabatino, Y. Rouphael and M. Mori 2021, Plant-based protein hydrolysate improves salinity tolerance in hemp: Agronomical and physiological aspects. Agronomy 11:342. doi:10.3390/agronomy11020342

10.3390/agronomy11020342
11

Durand M., D. Mainson, B. Porcheron, L. Maurousset, R. Lemoine, and N. Pourtau 2018, Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta 247:587-611. doi:10.1007/s00425-017-2807-4

10.1007/s00425-017-2807-429138971PMC5809531
12

Gao W., D. He, F. Ji, S. Zhang, and J. Zheng 2020, Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 10:1082. doi:10.3390/agronomy10081082

10.3390/agronomy10081082
13

Gelderen V.K., C. Kang, and R. Pierik 2018, Light signaling, root development, and plasticity. Plant physiol 176:1049-1060. doi:10.1104/pp.17.01079

10.1104/pp.17.0107928939624PMC5813542
14

Grossnickle S.C. 2012, Why seedlings survive: influence of plant attributes. New For 43:711-738. doi:10.1007/s11056-012-9336-6

10.1007/s11056-012-9336-6
15

Hamedalla A.M., M.M. Ali, W.M. Ali, M.A.A. Ahmed, M.O. Kaseb, H.M. Kalaji, J. Gajc-Wolska, A.F. Yousef 2022, Increasing the performance of cucumber (Cucumis sativus L.) seedlings by LED illumination. Sci Rep 12:852. doi:10.1038/s41598-022-04859-y

10.1038/s41598-022-04859-y35039577PMC8764046
16

Hussain S., N. Iqbal, M. Brestic, M.A. Raza, T. Pang, D.R. Langham, M.E. Safdar, S. Ahmed, B. Wen, Y. Gao, and W. Liu 2019, Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci Total Environ 658:626-637. doi:10.1016/j.scitotenv.2018.12.182

10.1016/j.scitotenv.2018.12.18230580217
17

Kim K.H., M.R.A. Shawon, J.H. An, H.J. Lee, D.J. Kwon, I.C. Hwang, J.H. Bae, and K.Y. Choi 2022, Effect of shade screen on sap flow, chlorophyll fluorescence, NDVI, plant growth and fruit characteristics of cultivated paprika in greenhouse. Agriculture, 12:1405. doi:10.3390/agriculture12091405

10.3390/agriculture12091405
18

King D.A. 1990, The adaptive significance of tree height. Am Nat 135:809-828. doi:10.1086/285075

10.1086/285075
19

Korean statistical information service (KOSIS) 2024, Statistical database, Fruit-vegetables. Accessed July 26, 2024 at https://kosis.kr/statHtml/stat

20

Krupa Z., and M. Moniak 1998, The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Sci 138:149-156. doi:10.1016/S0168-9452(98)00159-9

10.1016/S0168-9452(98)00159-9
21

Mao H., T. Hang, X. Zhang, and N. Lu 2019, Both multi-segment light intensity and extended photoperiod lighting strategies, with the same daily light integral, promoted Lactuca sativa L. growth and photosynthesis. Agronomy 9:857. doi:10.3390/agronomy9120857

10.3390/agronomy9120857
22

Martín M., D.M. Noarbe, P.H. Serrot, and B. Sabater 2015. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations. Front Plant Sci 6:34. doi:10.3389/fpls.2015.00034

10.3389/fpls.2015.0003425709611PMC4321573
23

Moon W., and D.J. Yu 2013, Plant Physiol. KNOU Press. ISBN 978-89-20-01122-1 93520.

24

Morales F., M. Ancín, D. Fakhet, J. González-Torralba, A.L. Gámez, A. Seminario, D. Soba, S. Ben Mariem, M. Garriga, and I. Aranjuelo 2020, Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 9:88. doi:10.3390/plants9010088

10.3390/plants901008831936732PMC7020424
25

Morrissey R.C., D.F. Jacobs, A.S. Davis, and R.A. Rathfon 2010, Survival and competitiveness of quercus rubra regeneration associated with planting stocktype and harvest opening intensity. New For 40:273-287.

10.1007/s11056-010-9199-7
26

Passioura J.B., 1991, Soil structure and plant growth. Soil Res 29:717-728.

10.1071/SR9910717
27

Prado S.A., L. Cabrera‐Bosquet, A. Grau, A. Coupel‐Ledru, E.J. Millet, C. Welcker, and F. Tardieu 2018, Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant Cell Env 41:314-326. doi:10.1111/pce.13083

10.1111/pce.1308329044609
28

Rose R., and J.S. Ketchum 2003, Interaction of initial seedling diameter, fertilization and weed control on douglas-fir growth over the first four years after planting. Ann For Sci 60:625-635. doi:10.1051/forest:2003055

10.1051/forest:2003055
29

Shawon M.R.A., M.O.K. Azad, B.R. Ryu, J.K. Na, and K.Y. Choi 2023, The electrical conductivity of nutrient solution influenced the growth, centellosides content and gene expression of Centella asiatica in a hydroponic system. Agriculture, 13:2236. doi:10.3390/agriculture13122236

10.3390/agriculture13122236
30

Shawon R.A., S.Y. Ha, T.H. Lee, T.L. Cao, H.C. Kim, J.H. Bae, and Y.G. Ku 2021, Influence of shade treatment on plant growth characteristics and spear production in five asparagus (Asparagus officinalis L.) cultivars. Hortic Sci Technol 39:37-48. doi:10.7235/HORT.20210004

10.7235/HORT.20210004
31

Shock C.C., A.B. Pereira, and E.P. Eldredge 2007, Irrigation best management practices for potato. American J Potato Res 84:29-37. doi:10.1007/BF02986296

10.1007/BF02986296
32

Slattery R.A., A.VanLoocke, C.J. Bernacchi, X.G. Zhu, and D.R. Ort 2017, Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci 8:238568. doi:10.3389/fpls.2017.00549

10.3389/fpls.2017.0054928458677PMC5394119
33

Szulc P., J. Bocianowski, K. Nowosad, W. Zielewicz, and J. Kobus-Cisowska 2021, SPAD leaf greenness index: green mass yield indicator of maize (Zea mays L.), genetic and agriculture practice relationship. Plants, 10:830. doi:10.3390/plants10050830

10.3390/plants1005083033919413PMC8143313
34

Taylor S.E, and N. Terry 1984, Limiting factors in photosynthesis: v. photochemical energy supply colimits photosynthesis at low values of intercellular CO2 concentration. Plant Physiol 75:82-86. doi:10.1104/pp.75.1.82

10.1104/pp.75.1.8216663607PMC1066839
35

Tominaga J., H. Shimada, and Y., Kawamitsu 2018. Direct measurement of intercellular CO2concentration in a gas-exchange system resolves overestimation using the standard method. J Exp Bot 69:1981-1991. doi:10.1093/jxb/ery044

10.1093/jxb/ery04429432576PMC6018834
36

Viljevac M., K. Dugalić, I. Mihaljević, D. Šimić, R. Sudar, Z. Jurković, and H. Lepeduš 2013, Chlorophylls content, photosynthetic efficiency and genetic markers in two sour cherry (Prunus cerasus L.) genotypes under drought stress. Acta Bot Croat 72:221-235. doi:10.2478/botcro-2013-0003

10.2478/botcro-2013-0003
37

Wang Y., Y. Chu, Z. Wan, G. Zhang, L. Liu, and Z. Yan 2021, Root architecture, growth and photon yield of cucumber seedlings as influenced by daily light integral at different stages in the closed transplant production system. Horticulturae 7:328. doi:10.3390/horticulturae7090328

10.3390/horticulturae7090328
38

Weston E., K. Thorogood, G. Vinti, and E. López-Juez 2000, Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta 211:807-815. doi:10.1007/s004250000392

10.1007/s00425000039211144265
39

Wu N.B., and F. Tan 2002, Studies of water regimes of Cinnamomum pauciflorum seedlings grown under different light intensity conditions. J Southwest Agri Univ 27:755-758.

40

Yousef A.F., M.M. Ali, H.M. Rizwan, M.A. Ahmed, W.M. Ali, H.M. Kalaji, N. Elsheery, J. Wróbel, Y. Xu, and F. Chen 2021, Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings. Plos one 16:e0250210. doi:10.1371/journal.pone.0250210

10.1371/journal.pone.025021033961648PMC8104444
41

Zavala J.A., and D.A. Ravetta 2001, Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity. Field Crops Res 69:143-149. doi:10.1016/S0378-4290(00)00136-2

10.1016/S0378-4290(00)00136-2
42

Zhang Y., H. Dong, S. Song, W. Su, and H. Liu 2020, Morphological and physiological responses of cucumber seedlings to supplemental LED light under extremely low irradiance. Agronomy 10:1698. doi:10.3390/agronomy10111698

10.3390/agronomy10111698
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 33
  • No :4
  • Pages :179-188
  • Received Date : 2024-06-10
  • Revised Date : 2024-08-05
  • Accepted Date : 2024-09-02