Original Articles
Abbas A., S. Jain, M. Gour, and S. Vankudothu 2021, Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput Electron Agric 187:106279.
10.1016/j.compag.2021.106279Akiba Y., A. Ishibashi, M. Sato, and H. Shima 2022, Empirical rule of fruit rind fragmentation in muskmelon netting. J Phys Soc Japan 91:104801.
10.7566/JPSJ.91.104801Bayoudh K., R. Knani, F. Hamdaoui, and A. Mtibaa 2022, A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. Vis. Comput 38:2939-2970.
10.1007/s00371-021-02166-734131356PMC8192112Bermano A.H., R. Gal, Y. Alaluf, R. Mokady, Y. Nitzan, O. Tov, O. Patashnik, and D. Cohen-Or 2022, State‐of‐the‐Art in the Architecture, Methods and Applications of StyleGAN. Comput Graph Forum 41:591-611. Wiley Online Library.
10.1111/cgf.14503Bird J.J., C.M. Barnes, L.J. Manso, A. Ekárt, and D.R. Faria 2022, Fruit quality and defect image classification with conditional GAN data augmentation. Sci Hortic 293:110684. doi:10.1016/j.scienta.2021.110684
10.1016/j.scienta.2021.110684Chen D., X. Qi, Y. Zheng, Y. Lu, Y. Huang, and Z. Li 2024, Synthetic data augmentation by diffusion probabilistic models to enhance weed recognition. Comput Electron Agric 216:108517.
10.1016/j.compag.2023.108517Chen R.J., M.Y. Lu, T.Y. Chen, D.F.K. Williamson, and F. Mahmood 2021, Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng 5:493-497.
10.1038/s41551-021-00751-834131324PMC9353344Choi I., S. Park, and J. Park 2022, Generating and modifying high resolution fashion model image using StyleGAN. In 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), pp 1536-1538. IEEE.
10.1109/ICTC55196.2022.9952574Dehouche N., and K. Dehouche 2023, What's in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon 9(6). doi:10.1016/j.heliyon.2023.e16757
10.1016/j.heliyon.2023.e1675737292268PMC10245047Ezura H., and K. Hiwasa-Tanase, 2009. Fruit development. In Plant Developmental Biology-Biotechnological Perspectives: :301-318. Berlin, Heidelberg: Springer Berlin Heidelberg.
10.1007/978-3-642-02301-9_15Gerchikov N., A. Keren-Keiserman, R. Perl-Treves, and I. Ginzberg 2008, Wounding of melon fruits as a model system to study rind netting. Sci Hortic 117:115-122
10.1016/j.scienta.2008.03.015Hodan T., V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina, S.N. Sinha, B. Guenter 2019, Photorealistic image synthesis for object instance detection. In 2019 IEEE Int Conf Image Process (ICIP) (pp. 66-70). IEEE.
10.1109/ICIP.2019.8803821Kano Y., and N. Fukuoka 2006, Comparison of cell size and sugar accumulation in melons (Cucumis melo L.) grown early or late in summer. ECB 44:93-102.
10.2525/ecb.44.93Karras T., S. Laine, and T. Aila 2019, A style-based generator architecture for generative adversarial networks. In 2019 IEEE conference on computer vision and pattern recognition (CVPR), pp 4401-4410.
10.1109/CVPR.2019.00453Khalifa N.E., M. Loey, and S. Mirjalili 2022, A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif Intell Rev 55:2351-2377.
10.1007/s10462-021-10066-434511694PMC8418460Leiva-Valenzuela G.A., R. Lu, and J.M. Aguilera 2013, Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J Food Eng 115:91-98.
10.1016/j.jfoodeng.2012.10.001Li L., L. Chang, S. Ke, and D. Huang 2012, Multifractal analysis and lacunarity analysis: A promising method for the automated assessment of muskmelon (Cucumis melo L.) epidermis netting. Comput Electron Agric 88:72-84. doi:10.1016/j.compag.2012.06.006
10.1016/j.compag.2012.06.006Lim M.Y., S.H. Choi, H.J. Jeong, and G.L. Choi 2020, Characteristics of domestic net type melon in hydroponic spring cultivars using coir substrates. Hortic Sci Technol 38:78-86.
10.7235/HORT.20200008Lu C.Y., D.J.A. Rustia, and T.T. Lin 2019, Generative adversarial network based image augmentation for insect pest classification enhancement. IFAC-PapersOnLine 52:1-5.
10.1016/j.ifacol.2019.12.406Lu Y., and S. Young 2020, A survey of public datasets for computer vision tasks in precision agriculture. Comput Electron Agric 178: 105760.
10.1016/j.compag.2020.105760Luo C., Y. Wang, X. Zhang, W. Zhang, and H. Liu 2022, Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms. Catena 211:106023.
10.1016/j.catena.2022.106023Meor Yahaya M.S., and J. Teo 2023, Data augmentation using generative adversarial networks for images and biomarkers in medicine and neuroscience. Front appl math 9:1162760.
10.3389/fams.2023.1162760Mildenhall B., P. Hedman, R. Martin-Brualla, P.P. Srinivasan, and J.T. Barron 2022, Nerf in the dark: High dynamic range view synthesis from noisy raw images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 16190-16199.
10.1109/CVPR52688.2022.01571Olatunji J.R., G.P. Redding, C.L. Rowe, and A.R. East 2020, Reconstruction of kiwifruit fruit geometry using a CGAN trained on a synthetic dataset. Comput Electron Agric 177:105699.
10.1016/j.compag.2020.105699Sapkota B.B., S. Popescu, N. Rajan, R.G. Leon, C. Reberg-Horton, S. Mirsky, and M.V. Bagavathiannan 2022, Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton. Sci Rep 12:19580.
10.1038/s41598-022-23399-z36379963PMC9666527Sapkota R., D. Ahmed, and M. Karkee 2024, Creating image datasets in agricultural environments using DALL.E: generative AI-powered large language model. Soc Sci Res Netw. doi: 10.2139/ssrn.4770726
10.2139/ssrn.4770726Shorten C., and T.M. Khoshgoftaar 2019, A survey on image data augmentation for deep learning. J Bio Data 6:1-48.
10.1186/s40537-019-0197-0Vo H.T., K.C. Mui, N.N. Thien, and P.P. Tien 2024, Automating Tomato Ripeness Classification and Counting with YOLOv9. Int J Adv Comput Sci Appl 15.
10.14569/IJACSA.2024.01504113Wang D., J.G. Wang, and K. Xu 2021, Deep learning for object detection, classification and tracking in industry applications. Sensors 21:7349.
10.3390/s2121734934770656PMC8587754Wang Z., A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli 2004, Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600-612.
10.1109/TIP.2003.81986115376593Wong S.C., A. Gatt, V. Stamatescu, and M.D. McDonnell 2016, Understanding data augmentation for classification: when to warp?. In 2016 International Conference on Digital Image Computing: Techniques and Applications, 1-6.
10.1109/DICTA.2016.7797091Yoon S., M. Shin, J.H. Kim, J.W. Bang, H.J. Jeong, and T.I. Ahn 2023, Analysis of the relationship between melon fruit growth and net quality using computer vision and fruit modeling. J Bio-Env Con 32(4), 456-465.
10.12791/KSBEC.2023.32.4.456Yu F., A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao 2015, Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365.
- Publisher :The Korean Society for Bio-Environment Control
- Publisher(Ko) :(사)한국생물환경조절학회
- Journal Title :Journal of Bio-Environment Control
- Journal Title(Ko) :생물환경조절학회지
- Volume : 33
- No :4
- Pages :352-360
- Received Date : 2024-07-06
- Revised Date : 2024-10-08
- Accepted Date : 2024-10-21
- DOI :https://doi.org/10.12791/KSBEC.2024.33.4.352