All Issue

2024 Vol.33, Issue 4 Preview Page

Original Articles

31 October 2024. pp. 352-360
Abstract
References
1

Abbas A., S. Jain, M. Gour, and S. Vankudothu 2021, Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput Electron Agric 187:106279.

10.1016/j.compag.2021.106279
2

Akiba Y., A. Ishibashi, M. Sato, and H. Shima 2022, Empirical rule of fruit rind fragmentation in muskmelon netting. J Phys Soc Japan 91:104801.

10.7566/JPSJ.91.104801
3

Bayoudh K., R. Knani, F. Hamdaoui, and A. Mtibaa 2022, A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. Vis. Comput 38:2939-2970.

10.1007/s00371-021-02166-734131356PMC8192112
4

Bermano A.H., R. Gal, Y. Alaluf, R. Mokady, Y. Nitzan, O. Tov, O. Patashnik, and D. Cohen-Or 2022, State‐of‐the‐Art in the Architecture, Methods and Applications of StyleGAN. Comput Graph Forum 41:591-611. Wiley Online Library.

10.1111/cgf.14503
5

Bird J.J., C.M. Barnes, L.J. Manso, A. Ekárt, and D.R. Faria 2022, Fruit quality and defect image classification with conditional GAN data augmentation. Sci Hortic 293:110684. doi:10.1016/j.scienta.2021.110684

10.1016/j.scienta.2021.110684
6

Chen D., X. Qi, Y. Zheng, Y. Lu, Y. Huang, and Z. Li 2024, Synthetic data augmentation by diffusion probabilistic models to enhance weed recognition. Comput Electron Agric 216:108517.

10.1016/j.compag.2023.108517
7

Chen R.J., M.Y. Lu, T.Y. Chen, D.F.K. Williamson, and F. Mahmood 2021, Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng 5:493-497.

10.1038/s41551-021-00751-834131324PMC9353344
8

Choi I., S. Park, and J. Park 2022, Generating and modifying high resolution fashion model image using StyleGAN. In 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), pp 1536-1538. IEEE.

10.1109/ICTC55196.2022.9952574
9

Dehouche N., and K. Dehouche 2023, What's in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon 9(6). doi:10.1016/j.heliyon.2023.e16757

10.1016/j.heliyon.2023.e1675737292268PMC10245047
10

Ezura H., and K. Hiwasa-Tanase, 2009. Fruit development. In Plant Developmental Biology-Biotechnological Perspectives: :301-318. Berlin, Heidelberg: Springer Berlin Heidelberg.

10.1007/978-3-642-02301-9_15
11

Gerchikov N., A. Keren-Keiserman, R. Perl-Treves, and I. Ginzberg 2008, Wounding of melon fruits as a model system to study rind netting. Sci Hortic 117:115-122

10.1016/j.scienta.2008.03.015
12

Hodan T., V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina, S.N. Sinha, B. Guenter 2019, Photorealistic image synthesis for object instance detection. In 2019 IEEE Int Conf Image Process (ICIP) (pp. 66-70). IEEE.

10.1109/ICIP.2019.8803821
13

Kano Y., and N. Fukuoka 2006, Comparison of cell size and sugar accumulation in melons (Cucumis melo L.) grown early or late in summer. ECB 44:93-102.

10.2525/ecb.44.93
14

Karras T., S. Laine, and T. Aila 2019, A style-based generator architecture for generative adversarial networks. In 2019 IEEE conference on computer vision and pattern recognition (CVPR), pp 4401-4410.

10.1109/CVPR.2019.00453
15

Khalifa N.E., M. Loey, and S. Mirjalili 2022, A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif Intell Rev 55:2351-2377.

10.1007/s10462-021-10066-434511694PMC8418460
16

Leiva-Valenzuela G.A., R. Lu, and J.M. Aguilera 2013, Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J Food Eng 115:91-98.

10.1016/j.jfoodeng.2012.10.001
17

Li L., L. Chang, S. Ke, and D. Huang 2012, Multifractal analysis and lacunarity analysis: A promising method for the automated assessment of muskmelon (Cucumis melo L.) epidermis netting. Comput Electron Agric 88:72-84. doi:10.1016/j.compag.2012.06.006

10.1016/j.compag.2012.06.006
18

Lim M.Y., S.H. Choi, H.J. Jeong, and G.L. Choi 2020, Characteristics of domestic net type melon in hydroponic spring cultivars using coir substrates. Hortic Sci Technol 38:78-86.

10.7235/HORT.20200008
19

Lu C.Y., D.J.A. Rustia, and T.T. Lin 2019, Generative adversarial network based image augmentation for insect pest classification enhancement. IFAC-PapersOnLine 52:1-5.

10.1016/j.ifacol.2019.12.406
20

Lu Y., and S. Young 2020, A survey of public datasets for computer vision tasks in precision agriculture. Comput Electron Agric 178: 105760.

10.1016/j.compag.2020.105760
21

Luo C., Y. Wang, X. Zhang, W. Zhang, and H. Liu 2022, Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms. Catena 211:106023.

10.1016/j.catena.2022.106023
22

Meor Yahaya M.S., and J. Teo 2023, Data augmentation using generative adversarial networks for images and biomarkers in medicine and neuroscience. Front appl math 9:1162760.

10.3389/fams.2023.1162760
23

Mildenhall B., P. Hedman, R. Martin-Brualla, P.P. Srinivasan, and J.T. Barron 2022, Nerf in the dark: High dynamic range view synthesis from noisy raw images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 16190-16199.

10.1109/CVPR52688.2022.01571
24

Olatunji J.R., G.P. Redding, C.L. Rowe, and A.R. East 2020, Reconstruction of kiwifruit fruit geometry using a CGAN trained on a synthetic dataset. Comput Electron Agric 177:105699.

10.1016/j.compag.2020.105699
25

Sapkota B.B., S. Popescu, N. Rajan, R.G. Leon, C. Reberg-Horton, S. Mirsky, and M.V. Bagavathiannan 2022, Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton. Sci Rep 12:19580.

10.1038/s41598-022-23399-z36379963PMC9666527
26

Sapkota R., D. Ahmed, and M. Karkee 2024, Creating image datasets in agricultural environments using DALL.E: generative AI-powered large language model. Soc Sci Res Netw. doi: 10.2139/ssrn.4770726

10.2139/ssrn.4770726
27

Shorten C., and T.M. Khoshgoftaar 2019, A survey on image data augmentation for deep learning. J Bio Data 6:1-48.

10.1186/s40537-019-0197-0
28

Vo H.T., K.C. Mui, N.N. Thien, and P.P. Tien 2024, Automating Tomato Ripeness Classification and Counting with YOLOv9. Int J Adv Comput Sci Appl 15.

10.14569/IJACSA.2024.01504113
29

Wang D., J.G. Wang, and K. Xu 2021, Deep learning for object detection, classification and tracking in industry applications. Sensors 21:7349.

10.3390/s2121734934770656PMC8587754
30

Wang Z., A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli 2004, Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600-612.

10.1109/TIP.2003.81986115376593
31

Wong S.C., A. Gatt, V. Stamatescu, and M.D. McDonnell 2016, Understanding data augmentation for classification: when to warp?. In 2016 International Conference on Digital Image Computing: Techniques and Applications, 1-6.

10.1109/DICTA.2016.7797091
32

Yoon S., M. Shin, J.H. Kim, J.W. Bang, H.J. Jeong, and T.I. Ahn 2023, Analysis of the relationship between melon fruit growth and net quality using computer vision and fruit modeling. J Bio-Env Con 32(4), 456-465.

10.12791/KSBEC.2023.32.4.456
33

Yu F., A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao 2015, Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365.

34

Zhao Z.Q., P. Zheng, S.T. Xu, and X. Wu 2019, Object detection with deep learning: A review. IEEE Trans Neural Netw Learn Syst 30:3212-3232.

10.1109/TNNLS.2018.287686530703038
35

Zhou D., J. Fang, X. Song, C. Guan, J. Yin, Y. Dai, and R. Yang 2019, Iou loss for 2d/3d object detection. In 2019 International Conference on 3D Vision (3DV), pp 85-94. IEEE.

10.1109/3DV.2019.00019
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 33
  • No :4
  • Pages :352-360
  • Received Date : 2024-07-06
  • Revised Date : 2024-10-08
  • Accepted Date : 2024-10-21