All Issue

2024 Vol.33, Issue 4 Preview Page

Original Articles

31 October 2024. pp. 322-332
Abstract
References
1

Abdelkhalik A., B. Pascual, I. Nájera, M.A. Domene, C. Baixauli, and N. Pascual-Seva 2020, Effects of deficit irrigation on the yield and irrigation water use efficiency of drip-irrigated sweet pepper (Capsicum annuum L.) under Mediterranean conditions. Irrig Sci 38:89-104. doi:10.1007/s00271-019-00655-1

10.1007/s00271-019-00655-1
2

Bendig J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth 2014, Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens 6:10395-10412. doi:10.3390/rs61110395

10.3390/rs61110395
3

Bulanon D.M., J. Lonai, H. Skovgard, and E. Fallahi 2016, Evaluation of different irrigation methods for an apple orchard using an aerial imaging system. ISPRS Int J Geo-Inf 5:79. doi:10.3390/ijgi5060079

10.3390/ijgi5060079
4

Cățeanu M., and A. Ciubotaru 2021, The effect of lidar sampling density on DTM accuracy for areas with heavy forest cover. Forests 12:265. doi:10.3390/f12030265

10.3390/f12030265
5

Clifton-Brown J.C., and I. Lewandowski 2002, Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agron 16:97-110. doi:10.1016/S1161-0301(01)00120-4

10.1016/S1161-0301(01)00120-4
6

De Souza R., M.T. Peña-Fleitas, R.B. Thompson, M. Gallardo, and F.M. Padilla 2020, Assessing performance of vegetation indices to estimate nitrogen nutrition index in pepper. Remote Sens 12:763. doi:10.3390/rs12050763

10.3390/rs12050763
7

Domínguez-Niño J.M., J. Oliver-Manera, J. Girona, and J. Casadesús 2020, Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. Agric Water Manage 228:105880. doi:10.1016/j.agwat.2019.105880

10.1016/j.agwat.2019.105880
8

dos Santos R.A., R. Filgueiras, E.C. Mantovani, E.I. Fernandes-Filho, T.S. Almeida, L.P. Venancio, and A.C.B. da Silva 2021, Surface reflectance calculation and predictive models of biophysical parameters of maize crop from RG-NIR sensor on board a UAV. Precis Agric 1-24. doi:10.1007/s11119-021-09795-x

10.1007/s11119-021-09795-x
9

Feldmann F., and A. Rutikanga 2021, Phenological growth stages and BBCH-identification keys of Chilli (Capsicum annuum L., Capsicum chinense JACQ., Capsicum baccatum L.). J Plant Dis Prot 128:549-555. doi:10.1007/s41348-020-00395-x

10.1007/s41348-020-00395-x
10

Gabriel J.L., J.I. Lizaso, and M. Quemada 2010, Laboratory versus field calibration of capacitance probes. Soil Sci Soc Am J 74:593-601. doi:10.2136/sssaj2009.0157

10.2136/sssaj2009.0157
11

García C.C., M.H.J. Barfuss, E.M. Sehr, G.E. Barboza, R. Samuel, E.A. Moscone, and F. Ehrendorfer 2016, Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35-51. doi:10.1093/aob/mcw079

10.1093/aob/mcw07927245634PMC4934398
12

Gholipoor M., and F. Nadali 2019, Fruit yield prediction of pepper using artificial neural network. Sci Hortic 250: 249-253. doi:10.1016/j.scienta.2019.02.040

10.1016/j.scienta.2019.02.040
13

Grau E., and J.P. Gastellu-Etchegorry 2013, Radiative transfer modeling in the Earth-Atmosphere system with DART model. Remote Sens Environ 139:149-170. doi:10.1016/j.rse.2013.07.019

10.1016/j.rse.2013.07.019
14

Gupta C., V.K. Tewari, R. Machavaram, and P. Shrivastava 2022, An image processing approach for measurement of chili plant height and width under field conditions. J Saudi Soc Agric Sci 21:171-179.

10.1016/j.jssas.2021.07.007
15

Han S.H., and H.K. Joo 2022, Smart farm development strategy suitable for domestic situation-Focusing on ICT technical characteristics for the development of the industry6.0. Journal of Digital Convergence 20:147-157.

16

Jang G., J. Kim, D. Kim, Y.S. Chung, and H.J. Kim 2022, Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery. The Korean Journal of Crop Science 67:274-284.

17

Kang S.H., Y. Kim, S. Lee, H. Kim, and M. Kim 2022, A study on the field applicability of intermittent irrigation in protected cultivation using an automatic irrigation system. Appl Sci 12:10680. doi:10.3390/app122010680

10.3390/app122010680
18

Kelly J., N. Kljun, P.O. Olsson, L. Mihai, B. Liljeblad, P. Weslien, L. Klemedtsson, and L. Eklundh 2019, Challenges and best practices for deriving temperature data from an uncalibrated UAV thermal infrared camera. Remote Sens 11:567. doi:10.3390/rs11050567

10.3390/rs11050567
19

KOSTAT statistics Korea 2023, Crop production statistics. Available via http://www.kosis.kr Accessed 30 July 2024.

20

Lacastagneratte D.D., F.D.S. Rocha, M.D.F.G. Fernandes, M.D.F.S. Muniz, H.C.R.M. Catão, and C.J.B. Albuquerque 2021, Detection of fusariosis on black pepper plants using multispectral sensor. J Plant Dis Prot 128:571-576. doi:10.1007/s41348-020-00409-8

10.1007/s41348-020-00409-8
21

Lacerda L.N., J.L. Snider, Y. Cohen, V. Liakos, S. Gobbo, and G. Vellidis 2022, Using UAV-based thermal imagery to detect crop water status variability in cotton. Smart Agric Technol 2:100029. doi:10.1016/j.atech.2021.100029

10.1016/j.atech.2021.100029
22

López-García P., D. Intrigliolo, M.A. Moreno, A. Martínez-Moreno, J.F. Ortega, E.P. Pérez-Álvarez, and R. Ballesteros 2022, Machine learning-based processing of multispectral and RGB UAV imagery for the multitemporal monitoring of vineyard water status. Agronomy 12:2122. doi:10.3390/agronomy12092122

10.3390/agronomy12092122
23

Martonchik J.V., C.J. Bruegge, and A.H. Strahler 2000, A review of reflectance nomenclature used in remote sensing. Remote Sens Rev 19:9-20. doi:10.1080/02757250009532407

10.1080/02757250009532407
24

Mesas-Carrascosa F.J., F. Pérez-Porras, J.E. Meroño de Larriva, C. Mena Frau, F. Agüera-Vega, F. Carvajal-Ramírez, P. Martínez-Carricondo, A. García-Ferrer 2018, Drift correction of lightweight microbolometer thermal sensors onboard unmanned aerial vehicles. Remote Sens 10:615. doi:10.3390/rs10040615

10.3390/rs10040615
25

Millán S., J. Casadesús, C. Campillo, M.J. Moñino, and M.H. Prieto 2019, Using soil moisture sensors for automated irrigation scheduling in a plum crop. Water 11:2061. doi:10.3390/w11102061

10.3390/w11102061
26

Na S.I., C.W. Park, K.H. So, H.Y. Ahn, K.D. Kim, and K.D. Lee 2018, Estimation for red pepper growth by vegetation indices based on unmanned aerial vehicle. Korean J Soil Sci Fert 51:471-481. doi:10.7745/KJSSF.2018.51.4.471

10.7745/KJSSF.2018.51.4.471
27

Pérez-Harguindeguy N., S. Diaz E. Garnier S. Lavorel H. Poorter, P. Jaureguiberry, M. Bret-Harte, W. Cornwell, J. Craine, and D. Gurvich 2013, New handbook for standardised measurement of plant functional traits worldwide. Australian J Bot 61:167-234. doi:doi.org/10.1071/BT12225

10.1071/BT12225
28

Rodriguez-Loya J., M. Lerma, and J.L. Gardea-Torresdey 2023, Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: a review. Micromachines 15:24. doi:10.3390/mi15010024

10.3390/mi1501002438258143PMC10819909
29

Sawadogo A., L. Kouadio, F. Traoré, S.J. Zwart, T. Hessels, and K.S. Gündoğdu 2020, Spatiotemporal assessment of irrigation performance of the Kou Valley irrigation scheme in Burkina Faso using satellite remote sensing-derived indicators. ISPRS Int J Geo-Inf 9:484. doi:10.3390/ijgi9080484

10.3390/ijgi9080484
30

Shin T., S. Jeong, and J. Ko 2023, Development of a radiometric calibration method for multispectral images of croplands obtained with a remote-controlled aerial system. Remote Sens 15:1408. doi:10.3390/rs15051408

10.3390/rs15051408
31

Sishodia R.P., R.L. Ray, and S.K. Singh 2020, Applications of remote sensing in precision agriculture: A review. Remote Sens 12:3136. doi:10.3390/rs12193136

10.3390/rs12193136
32

Trout T.J., L.F. Johnson, and J. Gartung 2008, Remote sensing of canopy cover in horticultural crops. HortScience 43:333-337. doi:10.1016/j.jssas.2021.07.007

10.1016/j.jssas.2021.07.007
33

Tunca E., E.S. Köksal, A. Torres-Rua, W.P. Kustas, and H. Nieto 2022, Estimation of bell pepper evapotranspiration using two-source energy balance model based on high-resolution thermal and visible imagery from unmanned aerial vehicles. J Appl Remote Sens 16:022204-022204. doi:10.1117/1.JRS.16.022204

10.1117/1.JRS.16.022204
34

Xu R., C. Li, and S. Bernardes 2021, Development and testing of a UAV-based multi-sensor system for plant phenotyping and precision agriculture. Remote Sens 13:3517. doi:10.3390/rs13173517

10.3390/rs13173517
35

Yoon J.M., J.J. Jun, S.C. Lim, K.H. Lee, H.T. Kim, H.S. Jeong, and J.S. Lee 2010, Changes in selected components and antioxidant and antiproliferative activity of peppers depending on cultivation. J Korean Soc Food Sci Nutr 39:731-736. doi:10.3746/jkfn.2010.39.5.731

10.3746/jkfn.2010.39.5.731
36

Zhang C.Y., and T. Oki 2023, Water pricing reform for sustainable water resources management in China's agricultural sector. Agric Water Manage 275:108045. doi:10.1016/j.agwat.2022.108045

10.1016/j.agwat.2022.108045
37

Zhang H., L. Wang, T. Tian, and J. Yin 2021, A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens 13:1221. doi:10.3390/rs13061221

10.3390/rs13061221
38

Zhu W., Z. Sun, Y. Huang, T. Yang, J. Li, and K. Zhu 2021, Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping. Precis Agric 22:1768-1802. doi:10.1007/s11119-021-09811-0

10.1007/s11119-021-09811-0
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 33
  • No :4
  • Pages :322-332
  • Received Date : 2024-08-21
  • Revised Date : 2024-10-10
  • Accepted Date : 2024-10-11