All Issue

2025 Vol.34, Issue 1 Preview Page

Original Articles

31 January 2025. pp. 69-80
Abstract
References
1

Allen R.G., L.S. Pereira, D. Raes, and M. Smith 1998, Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 300:D05109.

2

Allen R.G., L.S. Pereira, T.A. Howell, and M.E. Jensen 2011, Evapotranspiration information reporting: II. Recommended documentation. Agric Water Manag 98:921-929. doi:10.1016/j.agwat.2010.12.016

10.1016/j.agwat.2010.12.016
3

Allen R.G., W.O. Pruitt, J.L. Wright, T.A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Steduto, J. Berengena, J.B. Yrisarry, M. Smith, L.S. Pereira, D. Raes, A. Perrier, I. Alves, I. Walter, R. Elliott 2006, A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric Water Manag 18:1-22. doi:10.1016/j.agwat.2005.03.007

10.1016/j.agwat.2005.03.007
4

Breiman L. 2001, Random forests. ML 45:5-32.

10.1023/A:1010933404324
5

Chen T., and C. Guestrin 2016, Xgboost: A scalable tree boosting system. Proc ACM SIGKDD Int Conf Knowl Discov Data Min 785-794. doi:10.1145/2939672.2939785

10.1145/2939672.2939785
6

Chipanshi A., Y. Zhang, L. Kouadio, N. Newlands, A. Davidson, H. Hill, R. Warren, B. Qian, B. Daneshfar, F. Bedard, G. Reichert 2015, Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric For Meteorol 206:137-150. doi: 10.1016/j.agrformet.2015.03.007

10.1016/j.agrformet.2015.03.007
7

Cortes C. 1995, Support-Vector Networks. ML 20:273-297.

10.1007/BF00994018
8

Dai X., H. Shi, Y. Li, Z. Ouyang, and Z. Huo 2009, Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrol Processes 23:442-450. doi:10.1002/hyp.7153

10.1002/hyp.7153
9

Djaman K., K. Lombard, K. Koudahe, S. Allen, and M. O'Neill 2018, Variability of the ratio of alfalfa to grass reference evapotranspiration under semiarid climate. Irrig Drain Syst Eng 7:2. doi:10.4172/2168-9768.1000204

10.4172/2168-9768.1000204
10

Drexler J.Z., R.L. Snyder, D. Spano, and U, K.T. Paw 2004, A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol Processes 18:2071-2101. doi:10.1002/hyp.1462

10.1002/hyp.1462
11

Freund Y., and R.E. Schapire 1997, A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119-139. doi:10.1006/jcss.1997.1504

10.1006/jcss.1997.1504
12

Friedman J.H. 2001, Greedy function approximation: a gradient boosting machine. Ann Stat. pp 1189-1232.

10.1214/aos/1013203451
13

Ge J., L. Zhao, Z. Yu, H. Liu, L. Zhang, X. Gong, and H. Sun 2022, Prediction of greenhouse tomato crop evapotranspiration using XGBoost machine learning model. Plant 11:1923. doi:10.3390/plants11151923

10.3390/plants1115192335893626PMC9330426
14

George B.A., B.R.S. Reddy, N.S. Raghuwanshi, and W.W. Wallender 2002, Decision support system for estimating reference evapotranspiration. J Irrig Drain Eng 128:1-10. doi:10.1061/(ASCE)0733-9437(2002)128:1(1)

10.1061/(ASCE)0733-9437(2002)128:1(1)
15

Hara P., M. Piekutowska, and G. Niedbała 2021, Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land 10:609. doi:10.3390/land10060609

10.3390/land10060609
16

Hastie T., and R. Tibshirani 1995, Discriminant adaptive nearest neighbor classification and regression. Advances in neural information processing systems 8.

17

Itenfisu D., R.L. Elliott, R.G. Allen, and I.A. Walter 2003, Comparison of reference evapotranspiration calculations as part of the ASCE standardization effort. J Irrig Drain Eng, 129:440-448. doi:10.1061/(ASCE)0733-9437(2003)129:6(440)

10.1061/(ASCE)0733-9437(2003)129:6(440)
18

Kim M., Y. Choi, S. O'Shaughnessy, P. Colaizzi, Y. Kim, J. Jeon, and S. Lee 2019, Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model. J Korean Soc Agric Eng 61:111-121. doi:10.5389/KSAE.2019.61.6.111

19

Loh, W.Y. 2011, Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl. Discov 1:14-23. doi:10.1002/widm.8

10.1002/widm.8
20

Lu Y., D. Ma, X. Chen, and J. Zhang 2018, A simple method for estimating field crop evapotranspiration from pot experiments. Water 10:1823. doi:10.3390/w10121823

10.3390/w10121823
21

Montgomery, D. C., E. A. Peck, and G. G. Vining 2021, Introduction to linear regression analysis. John Wiley and Sons.

22

Parisi S., L. Mariani, G. Cola, and T. Maggiore 2009, Mini-lysimeters evapotranspiration measurements on suburban environment. Ital J Agrometeorol 3:13-16.

23

Rumelhart D.E., G.E. Hinton, and R.J Williams. 1986, Learning representations by back-propagating errors. Nature 323: 533-536.

10.1038/323533a0
24

Smith M., A. Segeren, L. Santos Pereira, A. Perrier, and R. Allen 1990, Report on the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements.

25

Suntaranont B., S. Aramkul, M. Kaewmoracharoen, and P. Champrasert 2020, Water irrigation decision support system for practical weir adjustment using artificial intelligence and machine learning techniques. Sustainability 12:1763. doi:10.3390/su12051763

10.3390/su12051763
26

Vyas K.N., and R. Subbaiah 2016, Application of artificial neural network approach for estimating reference evapotranspiration. Curr World Environ 11:637-647. doi:10.12944/CWE

10.12944/CWE
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 34
  • No :1
  • Pages :69-80
  • Received Date : 2024-11-04
  • Revised Date : 2025-01-10
  • Accepted Date : 2025-01-22