All Issue

2023 Vol.32, Issue 4 Preview Page

Original Articles

31 October 2023. pp. 377-383
Alnusairi G.S.H., Y.S.A. Mazrou, S.H. Qari, A.A. Elkelish, M.H. Soliman, M. Eweis, K. Abdelaal, G.A. El-Samad, M.F.M. Ibrahim, and N.E. Nahhas 2021, Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants 10:1693. doi:10.3390/plants10081693 10.3390/plants1008169334451738PMC8400961
Baxter A., R. Mittler, and N. Suzuki 2014, ROS as key players in plant stress signaling. J Exp Bot 65:1229-1240. doi:10.1093/jxb/ert375 10.1093/jxb/ert37524253197
Bellin D., S. Asai, M. Delledonne, and H. Yoshioka 2013, Nitric oxide as a mediator for defense responses. Mol Plant-Microbe Interact 26:271-277. doi:10.1094/MPMI-09-12-0214-CR 10.1094/MPMI-09-12-0214-CR23151172
Bhattachrya A. 2022, Effect of low temperature stress on photosynthesis and allied traits: A review. In A Bhattacharaya, ed, Physiological processes in plants under low temperature stress. Springer, Singapore, pp 199-297. doi:10.1007/7/978-981-16-9037-2 10.1007/978-981-16-9037-2_3
Bradford M.M. 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3 10.1016/0003-2697(76)90527-3942051
Caverzan A., A. Casassola, and S.P. Brammer 2016, Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In A Shanker, C Shanker, eds, Abiotic and biotic stress in plants-recent advances and future perspectives. IntechOpen, London, UK, pp 463-480. doi:10.5772/61368 10.5772/6136827007891PMC4807390
Chomkitichai W., A. Chumyam, P. Rachtanapun, J. Uthaibutra, and K. Saengnil 2014, Reduction of reactive oxygen species production and membrane damage during storage of 'Daw' longan fruit by chlorine dioxide. Sci Hortic 170:143-149. doi:10.1016/j.scienta.2014.02.036 10.1016/j.scienta.2014.02.036
Clark D., J. Durner, D.A. Navarre, and D.F. Klessig 2000, Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact 13:1380-1384. doi:10.1094/MPMI.2000.13.12.1380 10.1094/MPMI.2000.13.12.138011106031
Dhindsa R.S., P. Plumb‐Dhindsa, and Y.A. Thorpe 1981, Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93-101. doi:10.1093/jxb/32.1.93 10.1093/jxb/32.1.93
Esim N., and O. Atici 2014, Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul 72:29-38. doi:10.1007/s10725-013-9833-4 10.1007/s10725-013-9833-4
Fan H., C. Du, Y. Xu, and X. Wu 2014, Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hortic Environ Biotechnol 55:159-165. doi:10.1007/s13580-014-0161-z 10.1007/s13580-014-0161-z
Fan H.F., C.X. Du, L. Ding, and Y.L. Xu 2013, Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiol Plant 35:2707-2719. doi:10.1007/s11738-013-1303-0 10.1007/s11738-013-1303-0
Fan Q.J., and J.H. Liu 2012, Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31:145-154. doi:10.1007/s00299-011-1148-1 10.1007/s00299-011-1148-121938448
Fancy N.N., A. Bahlmann, and G.J. Loake 2017, Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462-472. doi:10.1111/pce.12707 10.1111/pce.1270726754426
Hayat S., S. Yadav, A.S. Wani, M. Irfan, M.N. Alyemini, and A. Ahmad 2012, Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Hortic Environ Biotechnol 53:362-367. doi:10.1007/s13580-012-0481-9 10.1007/s13580-012-0481-9
Kong W.W., C.Y. Huang, Q. Chen, Y.J. Zou, M.R. Zhao, and J.X. Zhang 2012, Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis. Biotechnol Lett 34:1915-1919. doi:10.1007/s10529-012-0988-2 10.1007/s10529-012-0988-222763851
Korean Statistical Information Service (KOSIS) 2023, vegetable production (green vegetables) 1980~2022. (in Korean)
Lee H.J., J.S. Kim, S.G. Lee, S.K. Kim, B.H. Mun, and C.S. Choi 2017, Glutamic acid foliar application enhances antioxidant enzyme activities in kimchi cabbages leaves treated with low air temperature. Hortic Sci Technol 35:700-706. (in Korean) doi:10.12972/kjhst.20170074 10.12972/kjhst.20170074
Lee J.G., J. Lee, S. Park, Y.A. Jang, S.S. Oh, T.C. Seo, H.K. Yoon, and Y.C. Um 2011, Effect of low night-time temperature during seedling stage on growth of spring Chinese cabbage. J Bio-Env Con 20:326-332. (in Korean)
Lee J.H., H.J. Lee, S.H. Wi, I.H. Yu, K.H. Yeo, S.W. An, Y.A. Jang, and S.H. Jang 2021, Enhancement of growth and antioxidant enzyme activities on kimchi cabbage by melatonin foliar application under high temperature and drought stress conditions. Hortic Sci Technol 39:583-592. (in Korean) doi:10.7235/HORT.20210052 10.7235/HORT.20210052
Liu X., L. Wang, L. Liu, Y. Guo, and H. Ren 2011, Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. Afr J Biotechnol 10:4380-4386.
Liu Y.J., H.F. Jiang, Z.G. Zhao, and L.Z. An 2010, Nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells. Plant Physiol Biochem 48:936-944. doi:10.1016/j.plaphy.2010.09.001 10.1016/j.plaphy.2010.09.00120875746
Mao H., M. Chen, Y. Su, N. Wu, M. Yuan, S. Yuan, M. Brestic, M. Zivcak, H. Zhang, and Y. Chen 2018, Comparison on photosynthesis and antioxidant defense systems in wheat with different ploidy levels and octoploid Triticale. Int J Mol 19:3006. doi:10.3390/ijms19103006 10.3390/ijms1910300630279334PMC6213355
Mittler R. 2017, ROS are good. Trends Plant Sci 22:11-19. doi:10.1016/j.tplants.2016.08.002 10.1016/j.tplants.2016.08.00227666517
Nabi R.B.S., R. Tayade, A. Hussain, K.P. Kulkarni, Q.M. Imran, B.G. Mun, and B.W. Yun 2019, Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120-133. doi:10.1016/j.envexpbot.2019.02.003 10.1016/j.envexpbot.2019.02.003
Neill S.J., R. Desikan, and J.T. Hancock 2003, Nitric oxide signaling in plants. New Phytol 159:11-35. doi:10.3390/plants9111550 10.1046/j.1469-8137.2003.00804.x33873677
Oz M.T., F. Eyidogan, M. Yucel, and H.A. Öktem 2015, Functional role of nitric oxide under abiotic stress conditions. In MN Mobin, M Mohammad, FJ Corpas, eds, Nitric oxide action in abiotic stress responses in plants. Khan Springer Cham, Berlin, Germany, pp 21-41. doi:10.1007/978-3-319-17804-2_2 10.1007/978-3-319-17804-2_2
Saddiqui M.H., M.H. Al-Whaibi, and M.O. Basalah 2011, Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447-455. doi:10.1007/s00709-010-0206-9 10.1007/s00709-010-0206-920827494
Sardar H., Z. Khalid, M. Ahsan, S. Naz, A. Nawaz, R. Ahmad, K. Razzaq, S.M. Wabaidur, C. Jacquard, I. Širi'c, P. Kumar, and S.A. Fayssal 2023, Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants 12:1115. doi:10.3390/plants12051115 10.3390/plants1205111536903975PMC10005404
Sehar Z., I.R. Mir, S. Khan, A. Masood, and N.A. Khan 2023, Nitric oxide and proline modulate redox homeostasis and photosynthetic metabolism in wheat plants under high temperature stress acclimation. Plants 12:1256. doi:10.3390/plants12061256 10.3390/plants1206125636986944PMC10053195
Short A.W., R.J. Chen, and K.S. Wee Alison 2020, Comparison between parapatry mangrove sister species revealed higher photochemical efficiency in subtropical than tropical coastal vegetation under chilling stress. Aquat Bot 168:103323. doi:10.1016/j.aquabot.2020.103323 10.1016/j.aquabot.2020.103323
Simontacchi M., A. Galatro, F. Ramos-Artuso, and G.E. Santa-María 2015, Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977. doi:10.3389/fpls.2015.00977 10.3389/fpls.2015.0097726617619PMC4637419
Sohag A.A.M., Md. Tahjib-Ul-Arif, S. Afrin, Md.K. Khanc, Md. A.Hannan, M. Skalicky, Md.G. Mortuza, M. Brestic, M.A. Hossain, and Y. Murata 2020, Insights into nitric oxide-mediated water balance, antioxidant defence and mineral homeostasis in rice (Oryza sativa L.) under chilling stress. Nitric Oxide 100-101:7-16. doi:10.1016/j.niox.2020.04.001 10.1016/j.niox.2020.04.00132283262
Song X.P., Z.P. Xu, K.W. Zhang, L. Liang, J.C. Xiao, Z.G. Liang, G.F. Yu, B. Sun, Z. Huang, Y. Tang, Y.S. Lai, and H.X. Li 2023, NO and GSH alleviate the inhibition of low-temperature stress on cowpea seedlings. Plants 12:1317. doi:10.3390/plants12061317 10.3390/plants1206131736987004PMC10059058
Tang C.N., J.M. Xie, L. Jian, J. Zhang, C. Wang, and G. Liang 2021, Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. Plant Physiol Biochem 162:395-409. doi:10.1016/j.plaphy.2021.03.010 10.1016/j.plaphy.2021.03.01033740679
Xie Z., Y. Chu, W. Zhang, D. Lang, and X. Zhang 2019, Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158:99-106. doi:10.1016/j.envexpbot.2018.11.021 10.1016/j.envexpbot.2018.11.021
Xie Z., C. Yang, M. Li, Z. Zhang, Y. Wu, L. Gu, and X. Peng 2022, Nitric oxide crosstalk with phytohormone is involved in enhancing photosynthesis of Tetrastigma hemsleyanum for photovoltaic adaptation. Front Plant Sci 13:852956. doi:10.3389/fpls.2022.852956 10.3389/fpls.2022.85295635356119PMC8959772
Yang H., F. Wu, and J. Cheong 2011, Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem 127:1237-1242. doi:10.1016/j.foodchem.2011.02.011 10.1016/j.foodchem.2011.02.01125214120
Zhao L., J.X. He, X.M. Wang, and L.X. Zhang 2008, Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol 165:182-191. doi:10.1016/j.jplph.2007.03.002 10.1016/j.jplph.2007.03.00217499387
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :4
  • Pages :377-383
  • Received Date : 2023-10-13
  • Revised Date : 2023-10-23
  • Accepted Date : 2023-10-24