All Issue

2023 Vol.32, Issue 4 Preview Page

Original Articles

31 October 2023. pp. 384-395
Abstract
References
1
Allen R.G., L.S. Pereira, D. Raes, and M. Smith 1998, Crop evapotranspiration-guidelines for computing crop water requirements. FAO, Irrigation and Drainage Paper 56. Rome, Italy, p 300.
2
Allen R.G., W.O. Pruitt, J.L. Wright, T.A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Steduto, J. Berengena, J.B. Yrisarry, M. Smith, L.S. Pereira, D. Raes, A. Perrier, I. Alves, I. Walter, and R. Elliot 2006, A recommendation on standardized surface resistance for hourly calculation of reference Eto by the FAO56 Penman-Monteith method. Agric Water Manag 81:1-22. doi:10.1016/j.agwat.2005.03.007 10.1016/j.agwat.2005.03.007
3
Bejo S.K., S. Mustaffha, and W.I.W. Ismail 2014, Application of Artificial Neural Network in predicting crop yield: A review. J Food Eng 4:1-9.
4
Bera D., N.D. Chatterjee, and S. Bera 2021, Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal. Remote Sens Appl Soc Environ 22:100502. doi:10.1016/j.rsase.2021.100502 10.1016/j.rsase.2021.100502
5
Chauhan N.S. 2020, Optimization algorithms in Neural Networks. KDNuggets. Available via https://www.kdnuggets.com/2020/12/optimization-algorithms-neural-networks.html Accessed August 28 2023.
6
Chen Z., Z. Zhu, H. Jiang, and S. Sun 2020, Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J Hydrol 591:125286. doi:10.1016/j.jhydrol.2020.125286 10.1016/j.jhydrol.2020.125286
7
Chia M.Y., Y.F. Huang, C.H. Koo, J.L. Ng, A.N. Ahmed, and A. El-Shafie 2022, Long-term forecasting of monthly mean reference evapotranspiration using Deep Neural Network: A comparison of training strategies and approaches. Appl Soft Comput 126:109221. doi:10.1016/j.asoc.2022.109221 10.1016/j.asoc.2022.109221
8
Dahikar S., and S. Rode 2014, Agricultural crop yield prediction using artificial neural network approach. Int J Innov Res Electric Electron Instrum Control Eng 2:683-686.
9
De Wit C.T. 1958. Transpiration and Crop Yields. Institute of biological and chemical research of field crops and herbage. Wageningen 60:29-31. doi:10.1002/csc2.20094 10.1002/csc2.20094
10
Elbeltagi A., N. Kumari, J.K. Dharpure, A. Mokhtar, K. Alsafadi, M. Kumar, B. Mehdinejadiani, H.R. Etedali, Y. Brouziyne, A.R.M.T. Islam, and A. Kuriqi 2021, Prediction of combined terrestrial evapotranspiration index (CTEI) over large river basin based on machine learning approaches. Water 13:547. doi:10.3390/w13040547 10.3390/w13040547
11
Fan J., J. Zheng, L. Wu, and F. Zhang 2021, Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural network models. Agric Water Manag 245:106547. doi:10.1016/j.agwat.2020.106547 10.1016/j.agwat.2020.106547
12
Fernandez J.E., and M.V. Cuevas 2010, Irrigation scheduling from stem diameter variations: a review. Agric For Meteorol 150:135-151. doi:10.1016/j.agrformet.2009.11.006 10.1016/j.agrformet.2009.11.006
13
Fernandez M.D., S. Bonachela, F. Orgaz, R.B. Thomson, J.C. Lopez, M.R. Granados, M. Gallardo, and E. Fereres 2011, Erratum to: Measurement and estimation of plastic greenhouse reference evapotranspiration in Mediterranean climate. Irrig Sci 29:91-92. doi:10.1007/s00271-010-0210-z 10.1007/s00271-010-0210-z
14
Ferreira L.B., and F.F. da Cunha 2020, New Approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric Water Manag 234:106113. doi:10.1016/j.agwat.2020.106113 10.1016/j.agwat.2020.106113
15
Gallardo M., M.D. Fernandez, C. Gimenez, F.M. Padilla, and R.B. Thompson 2016, Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses. Agric Syst 146:30-43. doi:10.1016/j.agsy.2016.03.014 10.1016/j.agsy.2016.03.014
16
Gallardo M., R.B. Thompson, and M.D. Fernandez 2013, Water requirements and irrigation management in Mediterranean greenhouses: the case of the southeast coast of Spain. In W Baudoin, R Nono-Womdim, N Lutaladio, A Hodder, N Castilla, C Leonardi, S de Pascale, and M. Qaryouti, eds, Good Agriculture Practices for Greenhouse Vegetable Crops: Principles of Mediterranean Climate Areas. FAO, Rome, Italy, pp 109-136.
17
Geelen P.A.M., J.O. Voogt, and P.A. van Weel 2020, Plant empowerment: The basic principles. Ed 2. Letsgrow.com.
18
Hazlett D. 2022, Importance of transpiration rates. J Glob Sci Res 10:7-8. doi:10.15651/GJARR.22.9.4 10.15651/GJARR.22.9.4
19
Incrocci L., R.B. Thompson, M.D.F. Fernandez, S. de Pascale, A. Pardossi, C. Stanghellini, Y. Rouphael, and M. Gallardo 2020, Irrigation management of European greenhouse vegetable crops. Agric Water Manag 242:106393. doi:10.1016/j.agwat.2020.106393 10.1016/j.agwat.2020.106393
20
Jo W.J., and J.H. Shin 2021, Development of a transpiration model for precise tomato (Solanum lycopersicum L.) irrigation control under various environmental conditions. Plant Physiol Biochem 162:388-394. doi:10.1016/j.plaphy.2021.03.005 10.1016/j.plaphy.2021.03.00533740678
21
Jolliet O., and B.J. Bailey 1992, The effect if climate on tomato transpiration in greenhouses: measurements and models comparison. Agric For Meteorol 58:43-62. doi:10.1016/0168-1923(92)90110-P 10.1016/0168-1923(92)90110-P
22
Katsoulas N., and C. Stanghellini 2019, Modelling crop transpiration in greenhouses: different models for different applications. Agronomy 9:392. doi:10.3390/agronomy9070392 10.3390/agronomy9070392
23
Li Y., J. Ye, D. Xu, G. Zhou, and H. Feng 2022, Prediction of sap flow with historical environmental factors based on deep learning technology Comput Electron Agric 202:107400. doi:10.1016/j.compag.2022.107400 10.1016/j.compag.2022.107400
24
Li Y., L. Gou, J. Wang, Y. Wang, D. Xu, and J. Wen 2023, An improved sap flow prediction model based on CNN-GRU-BiLSTM and factor analysis of historical environmental variables. Forests 14:1310. doi:10.3390/f14071310 10.3390/f14071310
25
Magan J.J., M. Gallardo, R.B. Thompson, and P. Lorenzo 2008, Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric Water Manag 95:1041-1055. doi:10.1016/j.agwat.2008.03.011 10.1016/j.agwat.2008.03.011
26
Mehdizadeh S., B. Mohammadi, Q.B. Pham, and Z. Duan 2021, Development of boosted machine learning models for estimating daily reference evapotranspiration and comparison with empirical approaches. Water 13:3489. doi:10.3390/w13243489 10.3390/w13243489
27
Mohammadi B., and S. Mehdizadeh 2020, Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric Water Manag 237:106145. doi:10.1016/j.agwat.2020.106145 10.1016/j.agwat.2020.106145
28
Mohammadi B., R. Moazenzadeh, K. Christian, Z., and Duan 2021, Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models. Environ Sci Pollut Res 28:65752-65768. doi:10.1007/s11356-021-15563-1 10.1007/s11356-021-15563-134319517
29
Nam D.S., T. Moon, J.W. Lee, and J.E. Son 2019, Estimating transpiration rates of hydroponically-grown paprika via an artificial neural network using aerial and root-zone environments and growth factors in greenhouses. Hortic Environ Biotechnol 60:913-923. doi:10.1007/s13580-019-00183-z 10.1007/s13580-019-00183-z
30
Nwogu E.C., I.S. Iwueze, and V.U. Nlebedim 2016, Some tests for seasonality in time series data. J Mod Appl Stat Methods 15:382-399. doi:10.22237/jmasm/1478002920 10.22237/jmasm/1478002920
31
Ostertagová E. 2012, Modelling using polynomial regression. Procedia Eng 48:500-506. doi:10.1016/j.proeng.2012.09.545 10.1016/j.proeng.2012.09.545
32
Park Y.S., and S. Lek 2016, Chapter 7-artificial neural networks: Multilayer perceptron for ecological modeling. Dev Environ Model 28:123-140. doi:10.1016/B978-0-444-63623-2.00007-4 10.1016/B978-0-444-63623-2.00007-4
33
PASSeL (Plant and Soil Science eLibrary) 2023, Transpiration-factors affecting rates of transpiration. https://passel2.unl.edu/view/lesson/c242ac4fbaaf/6. Accessed August 28 2023
34
Priestly C.H.B., and R.J. Taylor 1972, On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81-92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
35
Saedi R. 2022, Evaluation of multivariate regression models in estimation of evaporation and transpiration components of maize, under salinity stress conditions. Iran J Soil Water Res 53:71-84. doi:10.22059/ijswr.2022.335453.669157 10.22059/ijswr.2022.335453.669157
36
Sanchez J.A., F. Rodriguez, J.L. Guzman, and M.R. Arahal 2012, Virtual sensors for designing irrigation controllers in greenhouses. Sensors 12:15244-15266. doi:10.3390/s121115244 10.3390/s12111524423202208PMC3522961
37
Shao M., H.Liu, and L.Yan 2022, Estimating tomato transpiration cultivated in a sunken solar greenhouse with the Penman-Monteith, Shuttleworth-Wallace and Priestly-Taylor models in the North China plain. Agronomy 12:2382. doi:10.3390/agronomy12102382 10.3390/agronomy12102382
38
Shin J.H., and J.E. Son 2015, Development of a real-time irrigation control system considering transpiration, substrate electrical conductivity, and drainage rate of nutrient solutions in soilless culture of paprika (Capsicum annuum L.). Eur J Hortic Sci 80:271-279. doi:10.17660/eJHS.2015/80.6.2 10.17660/eJHS.2015/80.6.2
39
Shin J.H., J.S. Park, and J.E. Son 2014, Estimating actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants. Agric Water Manag 135:9-18. doi:10.1016/j.agwat.2013.12.009 10.1016/j.agwat.2013.12.009
40
Shuttleworth W.J., and J.S. Wallace 1985, Evaporation from sparse crops-An energy combination theory. Q J R Meteorol 111:839-855. doi:10.1002/qj.49711146910 10.1002/qj.49711146910
41
Tian H., P. Wang, K. Tansey, J. Zhang, S. Zhang, and H. Li 2020, An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric For Meteorol 310:108629. doi:10.1016/j.agrformet.2021.108629 10.1016/j.agrformet.2021.108629
42
Tranmer M., J. Murphy, M. Elliot, and M. Pampaka 2020, Multiple linear regression (2nd Edition). Cathie March institute working paper. https://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/multiple-linear-regression.pdf Accessed August 28 2023
43
Tu J., X. Wei, B. Huang, H. Fan, M. Jian, and W. Li 2019, Improvement of sap flow estimation by including phonological index and time-lag effect in back-propagation neural network models. Agric For Meteorol 276:107608. doi:10.1016/j.agrformet.2019.06.007 10.1016/j.agrformet.2019.06.007
44
Tunali U., I.H. Tuzel, Y. Tuzel, and Y. Senol 2023, Estimation of actual crop evapotranspiration using artificial neural networks in tomato grown in closed soilless culture system. Agric Water Manag 284:108331. doi:10.1016/j.agwat.2023.108331 10.1016/j.agwat.2023.108331
45
Vanja S., M. Eibl, and C. Hochenauer 2021, Artificial intelligence for time-efficient prediction and optimization of solid oxide fuel performances. Energy Convers Manag 230:113764. doi:10.1016/j.enconman.2020.113764. 10.1016/j.enconman.2020.113764
46
Yildirim E., and M. Ekinci 2022, Vegetable crops: health benefits and cultivation. IntechOpen:95704. doi:10.5772/int echopen.95704 10.5772/intechopen.95704
47
Ying X. 2019, An overview of overfitting and its solutions. J Phys Conf Ser 1168:022022. doi:10.1088/1742-6596/1168/2/022022 10.1088/1742-6596/1168/2/022022
48
Yong S.L.S., J.L. Ng, Y.F. Huang, and C.K. Ang 2023, Estimation of reference crop evapotranspiration with three different machine learning models and limited meteorological variables. Agronomy 13:1048. doi:10.3390/agronomy13041048 10.3390/agronomy13041048
49
Zarzycki K., and M. Lawrynczuk 2021, LSTM and GRU neural networks as models of dynamical processes used in predictive control: A comparison of models developed for two chemical reactors. Sensors 21:5625. doi:10.3390/s21165625 10.3390/s2116562534451065PMC8402357
50
Zhang J., Y. Zhu, X. Zhang, M. Ye, and J. Yang 2018, Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918-929. doi:10.1016/j.jhydrol.2018.04.065 10.1016/j.jhydrol.2018.04.065
51
Zhu Y., Z. Cheng, K. Feng, C. Zhang, C. Cao, J. Huang, H. Ye, and Y. Gao 2022. Influencing factors for transpiration rate: A numerical simulation of an individual leaf system. Therm Sci Eng Prog 27:101110. doi:10.1016/j.tsep.2021.101110 10.1016/j.tsep.2021.101110
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :4
  • Pages :384-395
  • Received Date : 2023-10-06
  • Revised Date : 2023-10-24
  • Accepted Date : 2023-10-24