All Issue

2023 Vol.32, Issue 4 Preview Page

Original Articles

31 October 2023. pp. 366-376
Ahn J.H., K.D. Kim, and J.T. Lee 2014, Growth modeling of Chinese cabbage in an alpine area. Korean J Agric For Meteorol 16:309-315. (in Korean) doi:10.5532/KJAFM.2014.16.4.309 10.5532/KJAFM.2014.16.4.309
Choi B.O., S.W. Choi, and H.B. Lim 2020, An impact assessment of weather changes on yield and price for Chinese cabbage and Korean radish. J Rural Dev 43:21-47. (in Korean) doi:10.36464/jrd.2020.43.1.002 10.36464/jrd.2020.43.1.002
Choi I.T., K.M. Shim, Y.S Kim, and M.P Jung 2017, Predicting harvest maturity of the 'Fiji' apple using a Beta distribution phenology model based on temperature. J Environ Sci Int 26:1247-1253. (in Korean) doi:10.5322/JESI.2017.26.11.1247 10.5322/JESI.2017.26.11.1247
Gilmore Jr. E.C., and J.S Rogers 1958, Heat units as a method of measuring maturity in corn. Agron J 50:611-615. doi:10.2134/agronj1958.00021962005000100014x 10.2134/agronj1958.00021962005000100014x
Go S.H., D.H. Lee, S.I. Na, and J.H. Park 2022, Analysis of growth characteristics of kimchi cabbage using drone-based cabbage surface model image. Agriculture 12:216. doi:10.3390/agriculture12020216 10.3390/agriculture12020216
Hong S.Y., J. Hur, J.B. Ahn, J.M. Lee, B.K. Min, C.K. Lee, Y. Kim, K.D. Lee, S.H. Kim, G.Y. Kim, and K.M. Shim 2012, Estimating rice yield using MODIS NDVI and meteorological data in Korea. Korean J Remot Sens 28:509-520. (in Korean) doi:10.7780/KJRS.2012.28.5.4 10.7780/kjrs.2012.28.5.4
Hoogenboom G. 2000, Contribution of agrometeorology to the simulation of crop production and its applications. Agric For Meteorol 103:137-157. doi:10.1016/S0168-1923(00)00108-8 10.1016/S0168-1923(00)00108-8
Hwang S.W., J.Y. Lee, S.C. Hong, Y.H. Park, S.G. Yun, and M.H. Park 2003, High temperature stress of summer Chinese cabbage in alpine region. Korean J Soil Sci Fert 36:417-422. (in Korean)
IPCC 2023, Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Core Writing Team, H Lee, J Romero, eds, IPCC, Geneva, Switzerland, pp 35-115. doi:10.59327/IPCC/AR6-9789291691647 10.59327/IPCC/AR6-9789291691647
Kerkech M., A. Hafiane, and R. Canals 2018, Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput Electron Agric 155:237-243. doi:10.1016/j.compag.2018.10.006 10.1016/j.compag.2018.10.006
Kim D.W., H.S. Yun, S.J. Jeong, Y.S. Kwon, S.G. Kim, W.S. Lee, and H.J. Kim 2018b, Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery. Remot Sens 10:563. doi:10.3390/rs10040563 10.3390/rs10040563
Kim K.D., J.T. Suh, J.N. Lee, D.L. Yoo, M. Kwon, and S.C. Hong 2015, Evaluation of factors related to productivity and yield estimation based on growth characteristics and growing degree days in highland kimchi cabbage. Korean J Hortic Sci Technol 33:911-922. (in Korean) doi:10.7235/hort.2015.15074 10.7235/hort.2015.15074
Kim N.W., J.H. Lee, K.H. Cho, and S.H. Kim 2020, Korean Climate Change Assessment Report 2020. Meteorological Administration, Seoul, Korea. (in Korean)
Kim S.G., J.H. Lee, H.J. Lee, S.G. Lee, B.H. Mun, S.W. An, and H.S. Lee 2018a, Development of prediction growth and yield models by growing degree days in hot pepper. Protected Hort Plant Fac 27:424-430. (in Korean) doi:10.12791/KSBEC.2018.27.4.424 10.12791/KSBEC.2018.27.4.424
Kim D.W., H.S. Yun, S.J. Jeong, Y.S. Kwon, S.G. Kim, W.S. Lee, and H.J. Kim 2018b, Modeling and testing of growth status for Chinese cabbage and white radish with UAV based RGB imagery. Remot Sens 10:563. doi:10.3390/rs10040563 10.3390/rs10040563
Kim Y.T., S.H. Kim, and T.K. Kim 2011, Agricultural Management. KNOU Press, Seoul, Korea, pp 8-10. (in Korean)
Lee J.H., H.J. Lee, S.K. Kim, S.G. Lee, H.S. Lee, and C.S. Choi 2017, Development of growth models as affected by cultivation season and transplanting date and estimation of prediction yield in kimchi cabbage. J Bio-Env Con 26:235-241. (in Korean) doi:10.12791/KSBEC.2017.26.4.235 10.12791/KSBEC.2017.26.4.235
Lee J.W. 1996, A study of decision-making factors of production for radish and Chinese cabbage. KREI R346:39-67. (in Korean)
Lee K., M. Allen, and R. Leep 2002, Predicting optimum time of alfalfa harvest. In Proc. Tri-state Dairy Nutrition Conference, Fort Wayne. Ohio State University, Columbus, OH, USA, pp 149-152.
Lee S.G., T.C. Seo, Y.A. Jang, J.G. Lee, C.W. Nam, C.S. Choi, K.H. Yeo, and Y.C. Um 2012, Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. J Bio-Env Con 21:271-275. (in Korean)
Lim C.H., G.S. Kim, E.J. Lee, S.B. Heo, T.Y. Kim, Y.S. Kim, and W.K. Lee 2016, Development on crop yield forecasting model for major vegetable crops using meteorological information of main production area. J Clim Chang Res 7:193-203. (in Korean) doi:10.15531/ksccr.2016.7.2.193 10.15531/ksccr.2016.7.2.193
Maimaitijiang M., V. Sagan, P. Sidike, S. Hartling, F. Esposito, and F.B. Fritschi 2020, Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remot Sens Environ 237:111599. doi:10.1016/j.rse.2019.111599 10.1016/j.rse.2019.111599
McMaster G.S., and W.W. Wilhelm 1997, Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291-300. doi:10.1016/S0168-1923(97)00027-0 10.1016/S0168-1923(97)00027-0
Miller P., W. Lanier, and S. Brandt 2001, Using growing degree days to predict plant stages. Ag/Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, MO, USA, 59717:994-2721.
Na S.I., C.W. Park, K.H. So, J.M. Park, and K.D. Lee 2017, Development of garlic & onion yield prediction model on major cultivation regions considering MODIS NDVI and meteorological elements. Korean J Remoe Sens 33:647-659. (in Korean) doi:10.7780/kjrs.2017. 10.7780/kjrs.2017.
Oh S.J., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh 2014, Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature effects of differentiated temperature. Korean J Hortic Sci Technol 32:318-329. (in Korean) doi:10.7235/hort.2014.13174 10.7235/hort.2014.13174
Park S.H., H.R. Cho, S.B. Lee, J.S. Lee, and J.K. Kim 2021, Kimchi Cabbage. Rural Development Administration, Jeonju, Korea. (in Korean)
Popescu D., F. Stoican, G. Stamatescu, L. Ichim, and C. Dragana 2020, Advanced UAV-WSN system for intelligent monitoring in precision agriculture. Sensors 20:817. doi:10.3390/s20030817 10.3390/s2003081732028736PMC7038696
QGIS Development Team 2023, QGIS Geographic Information System. Open Source Geospatial Foundation Project.
R Core Team 2023, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Shahi T.B., C.Y. Xu, A. Neupane, and W. Guo 2023, Recent advances in crop disease detection using UAV and deep learning techniques. Remot Sens 15:2450. doi:10.3390/rs15092450 10.3390/rs15092450
Sim H.S., W.J. Jo, H.J. Lee, Y.H. Moon, U.J. Woo, S.B. Jung, S.R. Ahn, and S.K. Kim 2021, Determination of optimal growing degree days and cultivars of kimchi cabbage for growth and yield during spring cultivation under shading conditions. Korean J Hortic Sci Technol 39:714-725. doi:10.7235/HORT.20210063 10.7235/HORT.20210063
Son I.C., K.H. Moon, E.Y. Song, S.J. Oh, H.H. Seo, Y.E. Moon, and J.Y. Yang 2015, Effects of differentiated temperature based on growing season temperature on growth and physiological response in Chinese cabbage 'Chunkwang'. Korean J Agric For Meteorol 17:254-260. (in Korean) doi:10.5532/KJAFM.2015.17.3.254 10.5532/KJAFM.2015.17.3.254
OpenDroneMap Authors 2020,
Wei T., V. Simko, M. Levy, Y. Xie, Y. Jin, and J. Zemla 2017, Package 'corrplot'. Statistician 56:e24.
Wi S.H., E.Y. Song, S.J. Oh, I.C. Son, S.G. Lee, H.J. Lee, B.H. Mun, and Y.Y. Cho 2018, Estimation of optimum period for spring cultivation of 'Chunkwang' kimchi cabbage based on growing degree days in Korea. Agric For Meteorol 20:175-182. (in Korean) doi:10.5532/KJAFM.2018.20.2.175 10.5532/KJAFM.2018.20.2.175
Wi S.H., H.J. Lee, S.A. Ah, and S.K. Kim 2020a, Evaluating growth and photosynthesis of kimchi cabbage according to extreme weather conditions. Agronomy 10:1846. doi:10.3390/agronomy1021846 10.3390/agronomy10121846
Wi S.H., H.J. Lee, I.H. Yu, Y. Jang, K.H. Yeo, S. An, and J.H. Lee 2020b, Analysis of effect of environment on growth and yield of autumn kimchi cabbage in Jeonnam province using big data. Korean J Agric For Meteorol 22:183-193. (in Korean) doi:10.5532/KJAFM.2020.22.3.183 10.5532/KJAFM.2020.22.3.183
Yang Q., L. Shi, J. Han, Y. Zha, and P. Zhu 2019, Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res 235:142-153. doi:10.1016/j.fcr.2019.02.022 10.1016/j.fcr.2019.02.022
Zhang X., L. Han, Y. Dong, Y. Shi, W. Huang, L. Han, P. González-Moreno, H. Ma, H. Ye, and T. Sobeih 2019, A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remot Sens 11:1554. doi:10.3390/rs11131554 10.3390/rs11131554
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :4
  • Pages :366-376
  • Received Date : 2023-10-10
  • Revised Date : 2023-10-23
  • Accepted Date : 2023-10-24