All Issue

2019 Vol.28, Issue 4 Preview Page
30 November 2019. pp. 461-470
Abstract
References
1
Abbas, A., H. Yu, H. Cui, H. Yu, and X. Li. 2019. Effect of drought stress on chlorophyll fluorescence, and biomass portioning of Aegilops tauschii L. Applied Ecology and Environmental Research 17:1071-1082. 10.15666/aeer/1701_10711082
10.15666/aeer/1701_10711082
2
Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55:1607-1621. 10.1093/jxb/erh19615258166
10.1093/jxb/erh19615258166
3
Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59:89-113. 10.1146/annurev.arplant.59.032607.09275918444897
10.1146/annurev.arplant.59.032607.09275918444897
4
Banks, J.M. 2018. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environmental and Experimental Botany 155:118-127. 10.1016/j.envexpbot.2018.06.022
10.1016/j.envexpbot.2018.06.022
5
Bradford, K.J. and T.C. Hsiao. 1982. Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology 70:1508-1513. 10.1104/pp.70.5.150816662706PMC1065914
10.1104/pp.70.5.150816662706PMC1065914
6
Cen, H., H. Weng, J. Yao, M. He, J. Lv, S. Hua, H. Li, and Y. Y. He. 2017. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus huanglongbing. Frontiers in Plant Science 8:1509. 10.3389/fpls.2017.0150928900440PMC5581828
10.3389/fpls.2017.0150928900440PMC5581828
7
Chaerle, L., I. Leininen, H.G. Jones, and D.V.D. Streaten. 2007. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany 58:773-784. 10.1093/jxb/erl25717189594
10.1093/jxb/erl25717189594
8
Chaves M. M. and M. M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: prospects for watersaving agiculture. Journal of Experimental Botany 55:2365-2384. 10.1093/jxb/erh26915475377
10.1093/jxb/erh26915475377
9
Force, L., C. Critchley, and J.J.S. Rensen. 2003. New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research 78:17-33. 10.1023/A:102601211670916245061
10.1023/A:102601211670916245061
10
Gashi, B., F. Banani, and E. Kongjika. 2013. Chlorophyll fluorescence imaging of photosynthetic activity and pigment contents of the resurrection plants Ramonda serbica and Ramonda nathaliae during dehydration and rehydration. Physiology and Molecular Biology of Plants 19:333-341. 10.1007/s12298-013-0175-524431502PMC3715640
10.1007/s12298-013-0175-524431502PMC3715640
11
Gorbe, E. and A. Calatayud. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae 138:24-35. 10.1016/j.scienta.2012.02.002
10.1016/j.scienta.2012.02.002
12
Hazrati, S., Z. Tahmasebi-Savestani, S.A.M. Modarres-Sanavy, A. Mokhassi-Bidgoli, and S. Nicola. 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry 106:141-148. 10.1016/j.plaphy.2016.04.04627161580
10.1016/j.plaphy.2016.04.04627161580
13
Kim, H.J., M.Y. Roh, D.H. Lee, S.H. Jeon, S.O. Hur, J.Y. Choi, S.O. Chung, and J.Y. Rhee. 2011. Feasibility test on automatic control of soil water potential using a portable irrigation controller with an electrical resistance-based watermark sensor. Journal of Bio-Environment Control 20:93-100 (in Korean).
14
Lawor D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment 25:275-294. 10.1046/j.0016-8025.2001.00814.x11841670
10.1046/j.0016-8025.2001.00814.x11841670
15
Li, G.L., H.X. Wu, Y.Q. Sun, and S.Y. Zhang. 2013. Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings. Russian Journal of Plant Physiology 60:337-342. 10.1134/S1021443713020155
10.1134/S1021443713020155
16
Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics 444:139-158. 10.1016/j.abb.2005.10.01816309626
10.1016/j.abb.2005.10.01816309626
17
Mishra, K.B., A. Mishara, K. Novotna, B. Rapantova, P. Hodanova, O. Urban, and K. Klem. 2016. Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. Plant Methods 12:46. 10.1186/s13007-016-0145-327872654PMC5109828
10.1186/s13007-016-0145-327872654PMC5109828
18
Murchie, E.H. and T. Lawson. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64:3983-3998. 10.1093/jxb/ert20823913954
10.1093/jxb/ert20823913954
19
Park, I.S., C.Y. Shim, and J.M. Choi. 2017. Influence of postplanting fertilizer concentrations supplied through sub-irrigation in winter season cultivation of tomato on the seedling growth and changes in the chemical properties of root media. Protected Horticulture and Plant Factory 26:35-42 (in Korean). 10.12791/KSBEC.2017.26.1.35
10.12791/KSBEC.2017.26.1.35
20
Ruban, A.V. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170:1903-1916. 10.1104/pp.15.0193526864015PMC4825125
10.1104/pp.15.0193526864015PMC4825125
21
Rungrat, T., M. Awlia, T. Brown, R. Cheng, X. Sirault, J. Fajkus, M. Trtilek, F. Furbank, M. Badger, M. Tester, B.J. Pogson, J.O. Borevitz, and P. Wilson. 2016. Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. The Arabidopsis book 14. 10.1199/tab.018527695390PMC5042155
10.1199/tab.018527695390PMC5042155
22
Wang, Z., G. Li, H. Sun, L. Ma, Y. Guo, Z. Zhao, H. Gao, and L. Mei. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. The Company of Biologists 7:035279. 10.1242/bio.03527930127094PMC6262865
10.1242/bio.03527930127094PMC6262865
23
Widaryanto, E., K.P. Wicaksono, and H. Najiyah. 2017. Drought effect simulation on the growth and yield quality of melon (Cucumis melo L.) Journal of Agronomy 16:147-153. 10.3923/ja.2017.147.153
10.3923/ja.2017.147.153
24
Wu Z. Z., Y. Q. Ying, Y. B. Zhang., Y. F. Bi., A. K. Wang., and X. H. Du. 2018. Alleviation of drought stress in Phyllostachys edulis by N and P application. Scientific Reports 8:228. 10.1038/s41598-017-18609-y29321617PMC5762838
10.1038/s41598-017-18609-y29321617PMC5762838
25
Yamamoto, Y., H. Hori, S. Kai, T. Ishikawa, A. Ohnishi, N. Tsumura, and N. Morita. 2013. Quality control of photosystem II: reversible and irreversible protein aggregation decides the fate of photosystem II under excessive illumination. Frontiers in Plant Science 4:433. 10.3389/fpls.2013.00433
10.3389/fpls.2013.00433
26
Yao, J., D. Sun, H. Cen, H. Xu, H. Weng., F. Yaun, and Y. He. 2018. Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Frontiers in Plant Science 9:903. 10.3389/fpls.2018.0060329868063PMC5958224
10.3389/fpls.2018.0060329868063PMC5958224
27
Zlatev, Z.S. 2013. Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emirates Journal of Food & Agriculture 25:1014-1023. 10.9755/ejfa.v25i12.16734
10.9755/ejfa.v25i12.16734
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Protected Horticulture and Plant Factory
  • Journal Title(Ko) :시설원예ㆍ식물공장
  • Volume : 28
  • No :4
  • Pages :461-470
  • Received Date :2019. 09. 26
  • Revised Date :2019. 10. 25
  • Accepted Date : 2019. 10. 25