Original Articles
Garavaglia S., and A. Sharma 1997, A smart guide to dummy variables: Four applications and a macro. Proceedings of the Northeast SAS Users Group Conference. Murray Hill, NJ: Dun & Bradstreet.
Guera O. G. M., F. Castrejón-Ayala, N. Robledo, A. Jiménez-Pérez, and L. Sarazar-Marcial 2023, Dummy variable regression and artificial neural networks for maize grain yields prediction in push-pull systems. Research Square. Available via https://www.researchsquare.com Accessed 2 February 2023.
10.21203/rs.3.rs-2521610/v1Gupta I., S. Ayalasomayajula, Y. Shashidhara, A. Kataria, S. Shashidhara, and K. Kataria 2023, Innovations in agricultural forecasting: A multivariate regression study on global crop yield prediction. arXiv preprint arXiv:2312.02254.
10.17148/IJARCCE.2024.13922Hara P., M. Piekutowska, and G. Niedbała 2021, Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land 10:609.
10.3390/land10060609Jeong J.H., J.P. Resop, N.D. Mueller, D.H. Fleisher, K. Yun, E.E. Butler, D.J. Timlin, K.-M. Shim, J.S. Gerber, V.R. Reddy, and S.-H. Kim 2016, Random forest for global and regional crop yield prediction. PLOS ONE 11:e0156571. doi:10.1371/journal.pone.0156571
10.1371/journal.pone.015657127257967PMC4892571Kim J. S. 2015, Present studies and development plan of seedling industry in Korea. Master's thesis, Konkuk University Graduate School of Agriculture and Life Sciences.
Kim S. G., J. H. Lee, H. J. Lee, S. G. Lee, B. H. Moon, S. W. Ahn, and H. S. Lee 2018, Development of prediction growth and yield models by growing degree days in hot pepper. J Bio-Env Con 27:424-430 (in Korean) doi:10.12791/KSBEC.2018.27.4.424
10.12791/KSBEC.2018.27.4.424Korea Rural Economic Institute (KREI). 2011, A study on the current state and development strategies of raising seedlings industry, pp 15-17.
Kwack Y., S. W. An, and S. K. Kim 2021, Development of growth model for grafted hot pepper seedlings as affected by air temperature and light intensity. Sustainability 13:5895. doi:10.3390/su13115895
10.3390/su13115895Lobell D.B., and G.P. Asner 2003, Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032. doi:10.1126/science.1078475
10.1126/science.107847512586935Matsumura K., C.F. Gaitan, K. Sugimoto, A.J. Cannon, and W. Hsieh 2015, Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. Journal of Agricultural Science 153:399-410. doi:10.1017/S002185 9614000392
10.1017/S0021859614000392Muraina I.O. 2022, Ideal dataset splitting ratios in machine learning algorithms: General concerns for data scientists and data analysts. International Journal of Education and Learning Systems 7:496-504.
Rodríguez F., M. Berenguel, J. Guzmán, and A. Ramírez-Arias, 1999, Modeling and control of greenhouse crop growth. Springer, Cham, Switzerland.
Rural Development Administration (RDA) 2008, Vegetable Seedling Cultivation Technology, R. Korea, pp 16-19. (in Korean)
Rural Development Administration (RDA) 2012, Agricultural Science and Technology Research and Analysis Standards, R. Korea, pp 547-549. (in Korean)
Rural Development Administration (RDA) 2017, Pepper Agricultural Technology Guide, R. Korea, 8, pp 60-64. (in Korean)
Uribeetxebarria A., A. Castellón, and A. Aizpurua 2023, Optimizing wheat yield prediction integrating data from Sentinel-1 and Sentinel-2 with CatBoost algorithm. Remote Sensing 15:1640. doi:10.3390/rs15061640
10.3390/rs15061640Weng J. 2021, Data Splitting for Model Evaluation. Towards Data Science. Available via https://towardsdatascience.com Accessed 15 October 2021
- Publisher :The Korean Society for Bio-Environment Control
- Publisher(Ko) :(사)한국생물환경조절학회
- Journal Title :Journal of Bio-Environment Control
- Journal Title(Ko) :생물환경조절학회지
- Volume : 33
- No :4
- Pages :427-435
- Received Date : 2024-10-02
- Revised Date : 2024-10-23
- Accepted Date : 2024-10-27
- DOI :https://doi.org/10.12791/KSBEC.2024.33.4.427