All Issue

2024 Vol.33, Issue 2 Preview Page

Original Articles

30 April 2024. pp. 120-128
Abstract
References
1

Alreshidi E. 2019, Smart sustainable agriculture (SSA) solution underpinned by internet of things (IoT) and artificial intelligence (AI). Int J Adv Comput Sci Appl 10(5):90-102. doi:10.14569/IJACSA.2019.0100513

10.14569/IJACSA.2019.0100513
2

Anyatasia F. 2023, Investigating motivation and usage of text-to-image generative AI for creative practitioner. Available via https://helda.helsinki.fi/server/api/core/bitstreams/4edf6adb-2d67-4047-bf81-ea09a9b940f1/content

3

Bengio Y., Y. Lecun, and G. Hinton 2021, Deep learning for AI. Commun ACM 64(7):58-65.

10.1145/3448250
4

Bird J.J., C.M. Barnes, L.J. Manso, A. Ekárt, and D.R. Faria 2022, Fruit quality and defect image classification with conditional GAN data augmentation. Sci Hortic 293:110684. doi:10.1016/j.scienta.2021.110684

10.1016/j.scienta.2021.110684
5

Borji A. 2022, Generated faces in the wild: Quantitative comparison of stable diffusion, midjourney and dall-e 2. arXiv preprint arXiv:2210.00586. doi:10.48550/arXiv.2210.00586

10.48550/arXiv.2210.00586
6

Brewer M.T., L. Lang, K. Fujimura, N. Dujmovic, S. Gray, and E. van der Knaap 2006, Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141:15-25. doi:10.1104/pp.106.077867

10.1104/pp.106.07786716684933PMC1459328
7

Chang A., M. Savva, and C.D. Manning 2014, Learning spatial knowledge for text to 3D scene generation. In Prothe 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 2028-2038.

10.3115/v1/D14-1217
8

Creswell A., T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A.A. Bharath 2018, Generative adversarial networks: An overview. IEEE Signal Process Mag 35(1):53-65.

10.1109/MSP.2017.2765202
9

Dehouche N., and K. Dehouche 2023, What's in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon 9(6):e16757. doi:10.1016/j.heliyon.2023.e16757

10.1016/j.heliyon.2023.e1675737292268PMC10245047
10

Derevyanko N., and O. Zalevska 2023, Comparative analysis of neural networks Midjourney, Stable Diffusion, and DALL-E and ways of their implementation in the educational process of students of design specialities. Scientific Bulletin of Mukachevo State University Series "Pedagogy and Psychology" 9(3):36-44. doi:10.52534/msu-pp3.2023.36

10.52534/msu-pp3.2023.36
11

Dhariwal P., and A. Nichol 2021, Diffusion models beat GANs on image synthesis. Adv Neural Inf Process Syst 34:8780-8794. doi:10.48550/arXiv.2105.05233

10.48550/arXiv.2105.05233
12

Farooq M., A. Rehman, and M. Pisante 2019, Sustainable agriculture and food security. Innovations in Sustainable Agridoi:10.1007/978-3-030-23169-9_1

10.1007/978-3-030-23169-9_1
13

Feldmann M.J., M.A. Hardigan, R.A. Famula, C.M. López, A. Tabb, G.S. Cole, and S.J. Knapp 2020, Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry. GigaScience 9:1-17. doi:10.1093/gigascience/giaa030

10.1093/gigascience/giaa03032352533PMC7191992
14

Fjelland R. 2020, Why general artificial intelligence will not be realized. Humanit Soc Sci Commun 7(1):1-9. doi:10.1057/s41599-020-0494-4

10.1057/s41599-020-0494-4
15

Gehan M.A., N. Falgren, A. Abbasi, J.C. Berry, S.T. Callen, L. Chavez, A.N. Doust, M.J. Feldman, K.B. Gilbert, J.G. Hodge, and J.S. Hoyer 2017, PlantCV v2: image analysis software for high-throughput plant phenotyping. PeerJ 5:e4088. doi:10.7717/peerj.4088

10.7717/peerj.408829209576PMC5713628
16

Goertzel B., and C. Pennachin (Eds.) 2007, Artificial General Intelligence. Springer Berlin Heidelberg. doi:10.1007/978-3-540-68677-4

10.1007/978-3-540-68677-418058710
17

Goodfellow I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio 2020, Generative adversarial networks. Commun ACM 63(11):139-144.

10.1145/3422622
18

He K., X. Zhang, S. Ren, and J. Sun 2016, Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770-778.

10.1109/CVPR.2016.9026180094
19

Huang H., P.S. Yu, and C. Wang 2018, An introduction to image synthesis with generative adversarial nets. arXiv preprint arXiv:1803.04469. doi:10.48550/arXiv.1803.04469

10.48550/arXiv.1803.04469
20

Huang Z., F. Bianchi, M. Yuksekgonul, T.J. Montine, and J. Zou 2023, A visual-language foundation model for pathology image analysis using medical twitter. Nat Med 29(9):2307-2316.

10.1038/s41591-023-02504-337592105
21

Jie P., X. Shan, and J. Chung 2023, Comparative analysis of AI painting using [Midjourney] and [Stable Diffusion]-a case study on character drawing. Int J Adv Culture Technol 11(2):403-408. doi:10.17703/IJACT.2023.11.2.403

10.17703/IJACT.2023.11.2.403
22

Khalifa N.E., M. Loey, and S. Mirjalili 2022, A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif Intell Rev 55(3):2351-2377.

10.1007/s10462-021-10066-434511694PMC8418460
23

Kim D., D. Joo, and J. Kim 2020, Tivgan: Text to image to video generation with step-by-step evolutionary generator. IEEE Access 8:153113-153122. doi:10.1109/ACCESS.2020.3017881

10.1109/ACCESS.2020.3017881
24

Kim J.G., I.B. Lee, K.S. Yoon, T.H. Ha, R.W. Kim, U.H. Yeo, and S.Y. Lee 2018, A study on the trends of virtual reality application technology for agricultural education. J Bio-Env Con 27(2):147-157. doi:10.12791/KSBEC.2018.27.2.147

10.12791/KSBEC.2018.27.2.147
25

Kwon D.H. 2024, Analysis of prompt elements and use cases in image-generating AI: focusing on Midjourney, Stable Diffusion, Firefly, DALL· E. J Digit Contents Soc 25(2):341-354. doi:10.9728/dcs.2024.25.2.341

10.9728/dcs.2024.25.2.341
26

LeCun Y., Y. Bengio, and G. Hinton 2015, Deep learning. Nature 521(7553):436-444. doi:10.1038/nature14539

10.1038/nature1453926017442
27

Liu J., Y. Zhou, Y. Li, Y. Li, S. Hong, Q. Li, X. Liu, M. Lu, and X. Wang 2023, Exploring the integration of digital twin and generative AI in agriculture. 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), pp 223-228. doi:10.1109/IHMSC58761.2023.00059

10.1109/IHMSC58761.2023.00059
28

Liu V., and L.B. Chilton 2022, Design guidelines for prompt engineering text-to-image generative models. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 1-23.

10.1145/3491102.3501825
29

Liu Y., K. Zhang, Y. Li, Z. Yan, C. Gao, R. Chen, Z. Yuan, Y. Huang, H. Sun, J. Gao, L. He, and L. Sun 2024, Sora: a review on background, technology, limitations, and opportunities of large vision models. arXiv preprint arXiv:2402.17177. doi:10.48550/arXiv.2402.17177

10.48550/arXiv.2402.17177
30

Lu Y., and S. Young 2020, A survey of public datasets for computer vision tasks in precision agriculture. Comput Electron Agric 178:105760.

10.1016/j.compag.2020.105760
31

Lu Y., D. Chen, E. Olaniyi, and Y. Huang 2022, Generative adversarial networks (GANs) for image augmentation in agriculture: a systematic review. Comput Electron Agric 200:107208. doi:10.1016/j.compag.2022.107208

10.1016/j.compag.2022.107208
32

Muller V.C., and N. Bostrom 2016, Future progress in artificial intelligence: A survey of expert opinion. Fundamental issues of artificial intelligence, pp 555-572. doi:10.1007/978-3-319-26485-1_33

10.1007/978-3-319-26485-1_33
33

Oppenlaender J. 2023, A taxonomy of prompt modifiers for text-to-image generation. Behav Inf Technol 1-14. doi:10.1080/0144929X.2023.2286532

10.1080/0144929X.2023.2286532
34

Oppenlaender J., R. Linder, and J. Silvennoinen 2023, Prompting AI art: an investigation into the creative skill of prompt engineering. arXiv preprint arXiv:2303.13534. doi:10.48550/arXiv.2303.13534

10.48550/arXiv.2303.13534
35

Or-El R., X. Luo, M. Shan, E. Shechtman, J.J. Park, and I. Kemelmacher-Shlizerman 2022, Stylesdf: High-resolution 3d-consistent image and geometry generation. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 13503-13513.

10.1109/CVPR52688.2022.01314
36

Pavlichenko N., and D. Ustalov 2023, Best prompts for text-to-image models and how to find them. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 2067-2071. doi:10.1145/3539618.3592000

10.1145/3539618.3592000
37

Plant R., G. Pettygrove, and W. Reinert 2000, Precision agriculture can increase profits and limit environmental impacts. Calif Agric 54(4):66-71. doi:10.3733/ca.v054n04p66

10.3733/ca.v054n04p66
38

Poole B., A. Jain, J.T. Barron, and B. Mildenhall 2022, Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988. doi:10.48550/arXiv.2209.14988

10.48550/arXiv.2209.14988
39

Radford A., J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger and I. Sutskever 2021, Learning transferable visual models from natural language supervision. In International conference on machine learning, pp 8748-8763. PMLR. doi:10.48550/arXiv.2103.00020

10.48550/arXiv.2103.00020
40

Reviriego P., and E. Merino-Gómez 2022, Text to image generation: leaving no language behind. arXiv preprint arXiv:2208.09333. doi:10.48550/arXiv.2208.09333

10.48550/arXiv.2208.09333
41

Rural Development Administration (RDA) 2013, Available via https://www.rda.go.kr:2360/ptoPtoFrmPrmnList.do?prgId=pto_farmprmnptoEntry

42

Sapkota R., D. Ahmed, and M. Karkee 2024, Creating image datasets in agricultural environments using DALL. E: generative AI-powered large language model. arXiv preprint arXiv:2307.08789. doi:10.48550/arXiv.2307.08789

10.32388/A8DYJ7
43

Shorten C., and T.M. Khoshgoftaar 2019, A survey on image data augmentation for deep learning. J Big Data 6(1):1-48.

10.1186/s40537-019-0197-0
44

Stöckl A. 2023, Evaluating a synthetic image dataset generated with stable diffusion. In International Congress on Information and Communication Technology, pp 805-818. Singapore: Springer Nature Singapore. doi:10.48550/arXiv.2211.01777

10.1007/978-981-99-3243-6_64
45

Vougioukas S.G. 2019, Agricultural robotics. Annu Rev Control Robot Auton Syst 2:365-392.

10.1146/annurev-control-053018-023617
46

Wakchaure M., B.K. Patle, and A.K. Mahindrakar 2023, Application of AI techniques and robotics in agriculture: a review. Artif Intell Life Sci 3:100057. doi:10.1016/j.ailsci.2023.100057

10.1016/j.ailsci.2023.100057
47

Wasielewski A. 2023, Midjourney can't count": questions of representation and meaning for text-to-image generators. Interdiscip J Image Sci 37(1):71-82. Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-510407

48

Wong S.C., A. Gatt, V. Stamatescu, and M.D. McDonnell 2016, Understanding data augmentation for classification: when to warp?. In 2016 International Conference on Digital Image Computing: Techniques and Applications, pp 1-6.

10.1109/DICTA.2016.7797091
49

Wu J., Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum 2017, Marrnet: 3d shape reconstruction via 2.5 d sketches. Adv Neural Inf Process Syst 30. doi:10.48550/arXiv.1711.03129

10.48550/arXiv.1711.03129
50

Yin H., Z. Zhang, and Y. Liu 2023, The exploration of integrating the Midjourney artificial intelligence generated content tool into design systems to direct designers towards future-oriented innovation. Systems 11(12):566. doi:10.3390/systems11120566

10.3390/systems
51

Zhai X., A. Kolesnikov, N. Houlsby, and L. Beyer 2022, Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12104-12113.

10.1109/CVPR52688.2022.01179
52

Zhang Q., Y. Liu, C. Gong, Y. Chen, and H. Yu 2020, Applications of deep learning for dense scenes analysis in agriculture: A review. Sensors 20(5):1520.

10.3390/s2005152032164200PMC7085505
53

Zingaretti L.M., A. Monfort, and M. Pérez-Enciso 2021, Automatic fruit morphology phenome and genetic analysis: an application in the octoploid strawberry. Plant Phenomics 2021:9812910. doi:10.34133/2021/9812910

10.34133/2021/981291034056620PMC8139333
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 33
  • No :2
  • Pages :120-128
  • Received Date : 2024-04-16
  • Revised Date : 2024-04-26
  • Accepted Date : 2024-04-29