All Issue

2022 Vol.31, Issue 4 Preview Page

Original Articles

31 October 2022. pp. 332-342
Abstract
References
1
Awasthi S., and N.T. Saraswathi 2016, Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification. J Biomol Struct Dyn 34:2224-2232. doi:10.1080/07391102.2015.1110835 10.1080/07391102.2015.111083526488200
2
Ayaz F.A., R.H. Glew, M. Millson, H.S. Huang , L.T. Chuang, C. Sanz , and S. Hayırlıoglu-Ayaz 2006, Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem 96:572-579. doi:10.1016/j.foodchem.2005.03.011 10.1016/j.foodchem.2005.03.011
3
Bak S., and R. Feyereisen 2001, The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108-118. doi:10.1104/pp.127.1.108 10.1104/pp.127.1.10811553739PMC117967
4
Burger J., and G.E. Edwards 1996, Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties. Plant Cell Physiol 37:395-399. doi:10.1093/oxfordjournals.pcp.a028959 10.1093/oxfordjournals.pcp.a028959
5
Grubb C.D., and S. Abel 2006, Glucosinolate metabolism and its control. Trends Plant Sci 11:89-100. doi:10.1016/j.tplants.2005.12.006 10.1016/j.tplants.2005.12.00616406306
6
Grubb C.D., B.J. Zipp, J. Kopycki, M. Schubert, M. Quint, E. K. Lim, D.J. Bowles, M.S.C. Pedras, and S. Abel 2014, Comparative analysis of Arabidopsis UGT 74 glucosyltransferases reveals a special role of UGT 74C1 in glucosinolate biosynthesis. Plant J 79:92-105. doi:10.1111/tpj.12541 10.1111/tpj.1254124779768
7
Grubb C.D., B.J. Zipp, J. Ludwig‐Müller, M.N. Masuno, T.F. Molinski, and S. Abel 2004, Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893-908. doi:10.1111/j.1365-313X.2004.02261.x 10.1111/j.1365-313X.2004.02261.x15584955
8
Herr I., and M.W. Büchler 2010, Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377-383. doi:10.1016/j.ctrv.2010.01.002 10.1016/j.ctrv.2010.01.00220172656
9
Hull A.K., R. Vij, and J.L. Celenza 2000, Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci 97:2379-2384. doi:10.1073/pnas.040569997 10.1073/pnas.04056999710681464PMC15809
10
Jahangir M., H.K. Kim, Y.H. Choi, and R. Verpoorte 2009, Health‐affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31-43. doi:10.1111/j.1541-4337.2008.00065.x 10.1111/j.1541-4337.2008.00065.x
11
Jeon J., J.K. Kim, H. Kim H,Y.J. Kim, Y.J. Park, S.J. Kim, C.S. Kim, and S.U. Park 2018, Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings. Food Chem 241:7-13. doi:10.1016/j.foodchem.2017.08.067 10.1016/j.foodchem.2017.08.06728958560
12
Kim K.H., and S.O. Chung 2018, Comparison of plant growth and glucosinolates of Chinese cabbage and kale crops under three cultivation conditions. J Biosyst Eng 43:30-36. doi:10.5307/JBE.2018.43.1.030 10.5307/JBE.2018.43.1.030
13
Kozai T. 2013, Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hortic 1004:27-40. doi:10.17660/ActaHortic.2013.1004.2 10.17660/ActaHortic.2013.1004.2
14
Lännenpää M. 2014, Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Rep 33:1377-1388. doi:10.1007/s00299-014-1623-6 10.1007/s00299-014-1623-624792422
15
Lee G.J, J.W. Heo, C.R. Jung, H.H. Kim, J.S. Jo, J.G. Lee, G.J. Lee, S.Y. Nam, and E.Y. Hong 2016, Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. Protected Hort Plant Fac 25:77-82. (in Korean) doi:10.12791/KSBEC.2016.25.2.77 10.12791/KSBEC.2016.25.2.77
16
Lee H.H., S.C. Yang, M.K. Lee, D.K. Ryu, S. Park, S.O. Chung, S.U. Park, and S.J. Kim 2015, Effect of developmental stages on glucosinolate contents in kale (Brassica oleracea var. acephala). Hortic Sci Technol 33:177-185. (in Korean) doi:10.7235/hort.2015.14017 10.7235/hort.2015.14017
17
Liu Z., A.H. Hirani, P.B.E. McVetty, F. Daayf, C.F. Quiros, and G. Li 2012, Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol 79:179-189. doi:10.1007/s11103-012-9905-2 10.1007/s11103-012-9905-222477389
18
Lu N., E.L. Bernardo, C. Tippayadarapanich, M. Takagaki, N. Kagawa, and W. Yamori 2017, Growth and accumulation of secondary metabolites in perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front Plant Sci 8:708. doi:10.3389/fpls.2017.00708 10.3389/fpls.2017.0070828523012PMC5416839
19
Mayne S.T. 1996, Beta‐carotene, carotenoids, and disease prevention in humans. FASEB J 10:690-701. doi:10.1096/fasebj.10.7.8635686 10.1096/fasebj.10.7.86356868635686
20
Mikkelsen M.D., C.H. Hansen, U. Wittstock, B.A. Halkier 2000, Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712-33717. doi:10.1074/jbc.M001667200 10.1074/jbc.M00166720010922360
21
Mikkelsen M.D., P. Naur, and B.A. Halkier 2004, Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole‐3‐acetaldoxime in auxin homeostasis. Plant J 37:770-777. doi:10.1111/j.1365-313X.2004.02002.x 10.1111/j.1365-313X.2004.02002.x14871316
22
Naur P., B.L. Petersen, M.D. Mikkelsen, S. Bak, H. Rasmussen, C.E. Olsen, and B.A. Halkier 2003, CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63-72. doi:10.1104/pp.102.019240 10.1104/pp.102.01924012970475PMC196579
23
Neugart S., S. Baldermann, F.S. Hanschen, R. Klopsch, M. Wiesner-Reinhold, and M. Schreiner 2018, The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic 233:460-478. doi:10.1016/j.scienta.2017.12.038 10.1016/j.scienta.2017.12.038
24
Nguyen T.K.L., and M.M. Oh 2021, Physiological and biochemical responses of green and red perilla to LED‐based light. J Sci Food Agric 101:240-252. doi:10.1002/jsfa.10636 10.1002/jsfa.1063633460178
25
Palani K., B. Harbaum-Piayda, D. Meske, J.K. Keppler, W. Bockelmann, K.J. Heller, and K. Schwarz 2016, Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem 190:755-762. doi:10.1016/j.foodchem.2015.06.012 10.1016/j.foodchem.2015.06.01226213035
26
Piotrowski M., A. Schemenewitz, A. Lopukhina, A. Müller, T. Janowitz, E.W. Weiler, and C. Oecking 2004, Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717-50725. doi:10.1074/jbc.M407681200 10.1074/jbc.M40768120015358770
27
Sawada Y., A. Kuwahara, M. Nagano, T. Narisawa, A. Sakata, K. Saito, and M. Y. Hirai 2009a, Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol 50:1181-1190. doi:10.1093/pcp/pcp079 10.1093/pcp/pcp07919493961PMC2709551
28
Sawada Y., K. Toyooka, A. Kuwahara, A. Sakata, M. Nagano, K. Saito, and M.Y. Hirai 2009b, Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579-1586. doi:10.1093/pcp/pcp110 10.1093/pcp/pcp11019633020PMC2739670
29
Smillie R.M., and S.E. Hetherington 1999, Photoabatement by anthocyanin shields photosynthetic systems from light stress. Photosynthetica 36:451-463. doi:10.1023/A:1007084321859 10.1023/A:1007084321859
30
Sønderby I.E., F. Geu-Flores, and B.A. Halkier 2010, Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283-290. doi:10.1016/j.tplants.2010.02.005 10.1016/j.tplants.2010.02.00520303821
31
Waterland N.L., Y. Moon, J.C. Tou, D.A. Kopsell, M.J. Kim, and S. Park 2019, Differences in leaf color and stage of development at harvest influenced phytochemical content in three cultivars of kale (Brassica oleracea L. and B. napus). J Agric Sci 11:14-21. doi:10.5539/jas.v11n3p14 10.5539/jas.v11n3p14
32
Yan X., and S. Chen 2007, Regulation of plant glucosinolate metabolism. Planta 226:1343-1352. doi:10.1007/s00425-007-0627-7. 10.1007/s00425-007-0627-717899172
33
Yi G.E., A.H.K. Robin, K. Yang, J.I. Park, J.G. Kang, T.J. Yang, and I.S. Nou 2015, Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 20:13089-13111. doi:10.3390/molecules200713089 10.3390/molecules20071308926205053PMC6332298
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 31
  • No :4
  • Pages :332-342
  • Received Date : 2022-07-22
  • Revised Date : 2022-10-11
  • Accepted Date : 2022-10-14