All Issue

2023 Vol.32, Issue 3 Preview Page

Original Articles

31 July 2023. pp. 217-225
Akula R., and G.A. Ravishankar 2011, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720-1731. doi:10.4161/psb.6.11.17613 10.4161/psb.6.11.176133329344
Alemzadeh I., and S. Nejati 2009, Phenols removal by immobilized horseradish peroxidase. J Hazard Mater 166:1082-1086. doi:10.1016/j.jhazmat.2008.12.026 10.1016/j.jhazmat.2008.12.02619144465
Alfred M.M., and H. Eitan 1979, Polyphenol oxidases in plants. Phytochemistry 18:193-215. doi:10.1016/0031-9422(79)80057-6 10.1016/0031-9422(79)80057-6
Arora A., M.G. Nair, and G.M. Strasburg 1998, Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355-1363. doi:10.1016/S0891-5849(97)00458-9 10.1016/S0891-5849(97)00458-99641252
Austen N., H.J. Walker, J.A. Lake, G.K. Phoenix, and D.D. Cameron 2019, The regulation of plant secondary metabolism in response to abiotic stress: interactions between heat shock and elevated CO2. Front Plant Sci 10:1463. doi:10.3389/fpls.2019.01463 10.3389/fpls.2019.014636868642
Banik S., S. Bandyopadhyay, and S. Ganguly 2003, Bioeffects of microwave--a brief review. Bioresour Technol 87:155-159. doi:10.1016/S0960-8524(02)00169-4 10.1016/S0960-8524(02)00169-412765354
Campisi A., M. Gulino, R. Acquaviva, P. Bellia, G. Raciti, R. Grasso, F. Musumeci, A. Vanella, and A. Triglia 2010, Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett 473:52-55. doi:10.1016/j.neulet.2010.02.018 10.1016/j.neulet.2010.02.01820156525
Chang C.C., M.H. Yang, H.M. Wen, and J.C. Chern 2002, Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal 10:3. doi:10.38212/2224-6614.2748 10.38212/2224-6614.2748
Chen Y.P., J.F. Jia, and Y.J. Wang 2009, Weak microwave can enhance tolerance of wheat seedlings to salt stress. J Plant Growth Regul 28:381-385. doi:10.1007/s00344-009-9106-7 10.1007/s00344-009-9106-7
Cos P., L. Ying, M. Calomme, J.P. Hu, K. Cimanga, B.V. Poel, L. Pieters, A.J. Vlietinck, and D.V. Berghe 1998, Structure− activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61:71-76. doi:10.1021/np970237h 10.1021/np970237h9461655
Das K., and A. Roychoudhury 2014, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. doi:10.3389/fenvs.2014.00053 10.3389/fenvs.2014.00053
Demain A.L., and A. Fang 2000, The natural functions of secondary metabolites. In A Fiechter, ed, History of Modern Biotechnology I: Advances in Biochemical Engineering/Biotechnology, Vol 69. Springer, Berlin, Heidelberg, Germany, pp 1-39. doi:10.1007/3-540-44964-7_1 10.1007/3-540-44964-7_111036689
Durdik M., P. Kosik, E. Markova, A. Somsedikova, B. Gajdosechova, E. Nikitina, E. Horvathova, K. Kozics, D. Davis, and I. Belyaev 2019, Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci Rep 9:16182. doi:10.1038/s41598-019-52389-x 10.1038/s41598-019-52389-x6838175
Evans J.R. 2013, Improving photosynthesis. Plant Physiol 162:1780-1793. doi:10.1104/pp.113.219006 10.1104/pp.113.2190063729760
Fujikawa H, H. Ushioda, and Y. Kudo 1992, Kinetics of Escherichia coli destruction by microwave irradiation. Appl Environ Microbiol 58:920-924. doi:10.1128/aem.58.3.920-924.1992 10.1128/aem.58.3.920-924.1992195356
García-Macías P., M. Ordidge, E. Vysini, S. Waroonphan, N.H. Battey, M.H. Gordon, P. Hadley, P. John, J.A. Lovegrove, and A. Wagstaffe 2007, Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency. J Agric Food Chem 55:10168-10172. doi:10.1021/jf071570m 10.1021/jf071570m18001028
Griffin K.L., O.R. Anderson, M.D. Gastrich, J.D. Lewis, G. Lin, W. Schuster, J.R. Seemann, D.T. Tissue, M.H. Turnbull, and D. Whitehead 2001, Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci USA 98:2473-2478. doi:10.1073/pnas.041620898 10.1073/pnas.04162089830162
Halmagyi A., E. Surducan, and V. Surducan 2017, The effect of low-and high-power microwave irradiation on in vitro grown Sequoia plants and their recovery after cryostorage. J Biol Phys 43:367-379. doi:10.1007/s10867-017-9457-4 10.1007/s10867-017-9457-46104903
Hao Y.H., L. Zhao, and R.Y. Peng 2015, Effects of microwave radiation on brain energy metabolism and related mechanisms. Mil Med Res 2:4. doi:10.1186/s40779-015-0033-6 10.1186/s40779-015-0033-64440565
Hawrylak-Nowak B., S. Dresler, K. Rubinowska, R. Matraszek-Gawron, W. Woch, and M. Hasanuzzaman 2018, Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. Plant Physiol Biochem 127:446-456. doi:10.1016/j.plaphy.2018.04.018 10.1016/j.plaphy.2018.04.01829689508
Hoz A., A. Diaz-Ortiz, and A. Moreno 2005, Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164-178. doi:10.1039/B411438H 10.1039/B411438H15672180
Jayasanka S.M.D.H., and T. Asaeda 2014, The significance of microwaves in the environment and its effect on plants. Environ Rev 22:220-228. doi:10.1139/er-2013-0061 10.1139/er-2013-0061
Jin L., Y. Zheng, X. Liu, Y. Zhang, Z. Li, Y. Liang, S. Zhu, H. Jiang, Z. Cui, and S. Wu 2022, Magnetic composite rapidly treats Staphylococcus aureus‐infected osteomyelitis through microwave strengthened thermal effects and reactive oxygen species. Small 18:2204028. doi:10.1002/smll.202204028 10.1002/smll.20220402836089666
Kesari K.K., M.H. Siddiqui, R. Meena, H.N. Verma, and S. Kumar 2013, Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol 51:187-200. 23678539
Khalafallah A.A., and S.M. Sallam 2009, Response of maize seedlings to microwaves at 945 MHz. Rom J Biophys 19:49-62.
Khalil H., and R. Villota 1988, Comparative study on injury and recovery of Staphylococcus aureus using microwaves and conventional heating. J Food Prot 51:181-186. doi:10.4315/0362-028X-51.3.181 10.4315/0362-028X-51.3.18130978885
Korean Statistical Information Service (KOSIS) 2021, Accessed 27 November 2022 (in Korean)
Krinsky N.I. 2001, Carotenoids as antioxidants. Nutrition 17:815-817. doi:10.1016/S0899-9007(01)00651-7 10.1016/S0899-9007(01)00651-711684386
Kumari N., S. Verma, and V. Sharma 2018, Manipulating tomato plant electric signaling system by microwave radiation to enhance crop productivity and nutritional value. Comput Electron Agric 154:330-340. doi:10.1016/j.compag.2018.09.020 10.1016/j.compag.2018.09.020
Lichtenthaler H.K., and C. Buschmann 2001, Chlorophylls and carotenoids: measurement and characterization by UV‐VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4-3.1-8 doi:10.1002/0471142913.faf0403s01 10.1002/0471142913.faf0403s01
Liu W., Y. Feng, S. Yu, Z. Fan, X. Li, J. Li, and H. Yin 2021, The flavonoid biosynthesis network in plants. Int J Mol Sci 22:12824. doi:10.3390/ijms222312824 10.3390/ijms2223128248657439
López-Orenes A., M.A. Ferrer, and A.A. Calderón 2022, Microwave radiation as an inducer of secondary metabolite production in Drosera rotundifolia in vitro plantlets. J Nat Prod 85:2104-2109. doi:10.1021/acs.jnatprod.2c00031 10.1021/acs.jnatprod.2c0003135855561
MacDonald M.J., and G.B. D'Cunha 2007, A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273-282. doi:10.1139/O07-018 10.1139/O07-01817612622
Maslova T.G., E.F. Markovskaya, and N.N. Slemnev 2021, Functions of carotenoids in leaves of higher plants. Biol Bull Rev 11:476-487. doi:10.1134/S2079086421050078 10.1134/S2079086421050078
Mierziak J., K. Kostyn, and A. Kulma 2014, Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240-16265. doi:10.3390/molecules 191016240 10.3390/molecules6254026
Neugart S., S. Baldermann, F.S. Hanschen, R. Klopsch, M. Wiesner-Reinhold, and M. Schreiner 2018, The intrinsic quality of brassicaceous vegetables: how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic 233:460-478. doi:10.1016/j.scienta.2017.12.038 10.1016/j.scienta.2017.12.038
Oh J.S., K. Kawamura, B.K. Pramanik, and A. Hatta 2008, Investigation of water-vapor plasma excited by microwaves as ultraviolet light source. IEEE Trans Plasma Sci 37:107-112. doi:10.1109/TPS.2008.2007732 10.1109/TPS.2008.2007732
Pérez-Gálvez A., I. Viera, and M. Roca 2020, Carotenoids and chlorophylls as antioxidants. Antioxidants 9:505. doi:10.3390/antiox9060505 10.3390/antiox90605057346216
Quintana-Cabrera R., A. Mehrotra, G. Rigoni, and M.E. Soriano 2018, Who and how in the regulation of mitochondrial cristae shape and function. Biochem Biophys Res Commun 500:94-101. doi:10.1016/j.bbrc.2017.04.088 10.1016/j.bbrc.2017.04.08828438601
Randhir R., and K. Shetty 2004, Microwave-induced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson's diet. Process Biochem 39:1775-1784. doi:10.1016/j.procbio.2003.08.006 10.1016/j.procbio.2003.08.006
Rivero R.M., J.M. Ruiz, P.C. Garcıa, L.R. Lopez-Lefebre, E. Sánchez, and L. Romero 2001, Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315-321. doi:10.1016/S0168-9452(00)00395-2 10.1016/S0168-9452(00)00395-211164603
Samanta A., G. Das, and S.K. Das 2011, Roles of flavonoids in plants. Int J Pharm Sci Tech 6:12-35.
Senavirathna M.D.H.J., A. Takashi, and Y. Kimura 2014, Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor). Electromagn Biol Med 33:327-334. doi:10.3109/15368378.2013.844705 10.3109/15368378.2013.84470524131393
Severo J., A. Tiecher, F.C. Chaves, J.A. Silva, and C.V. Rombaldi 2011, Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem 126:995-1000. doi:10.1016/j.foodchem.2010.11.107 10.1016/j.foodchem.2010.11.107
Sharma V.P., H.P. Singh, D.R. Batish, and R.K. Kohli 2010, Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations. Z Naturforsch C J Biosci 65:66-72. doi:10.1515/znc-2010-1-212 10.1515/znc-2010-1-21220355324
Sharma V.P., H.P. Singh, R.K. Kohli, and D.R. Batish 2009, Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci Total Environ 407:5543-5547. doi:10.1016/j.scitotenv.2009.07.006 10.1016/j.scitotenv.2009.07.00619682728
Shckorbatov Y., V. Pasiuga, N. Kolchigin, V. Grabina, D. Ivanchenko, V. Bykov, and O. Dumin 2011, Cell nucleus and membrane recovery after exposure to microwaves. Proc Latv Acad Sci B: Nat Exact Appl Sci 65:13-20. doi:10.2478/v10046-011-0013-5 10.2478/v10046-011-0013-5
Singh P., Y. Arif, A. Bajguz, and S. Hayat 2021, The role of quercetin in plants. Plant Physiol Biochem 166:10-19. doi:10.1016/j.plaphy.2021.05.023 10.1016/j.plaphy.2021.05.02334087741
Soran M.-L., M. Stan, Ü. Niinemets, and L. Copolovici 2014, Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. J Plant Physiol 171:1436-1443. doi:10.1016/j.jplph.2014.06.013 10.1016/j.jplph.2014.06.0134410321
Staehelin L.A. 2003, Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185-196. doi:10.1023/A:1024994525586 10.1023/A:102499452558616228577
Stark G. 2005, Functional consequences of oxidative membrane damage. J Membr Biol 205:1-16. doi:10.1007/s00232-005-0753-8 10.1007/s00232-005-0753-816245038
Tibbitts T.W., and G. Bottenberg 1976, Growth of lettuce under controlled humidity levels. J Am Soc Hortic Sci 101:70-73. doi:10.21273/JASHS.101.1.70 10.21273/JASHS.101.1.70
Tiwari R., and C. Rana 2015, Plant secondary metabolites: a review. Int J Eng Res Generic Sci 3:661-670. 10.18488/journal.aefr/2015.5.4/102.4.661.670
Tungmunnithum D., A. Thongboonyou, A. Pholboon, and A. Yangsabai 2018, Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5:93. doi:10.3390/medicines5030093 10.3390/medicines50300936165118
Urquiaga I., and F. Leighton 2000, Plant polyphenol antioxidants and oxidative stress. Biol Res 33:55-64. doi:10.4067/S0716-97602000000200004 10.4067/S0716-9760200000020000415693271
Vollmer M. 2004, Physics of the microwave oven. Phys Edu 39:74. doi:10.1088/0031-9120/39/1/006 10.1088/0031-9120/39/1/006
Wang N., W. Liu, L. Yu, Z. Guo, Z. Chen, S. Jiang, H. Xu, H. Fang, Y. Wang, Z. Zhang, and X. Chen 2020, HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol 184:1273-1290. doi:10.1104/pp.20.01106 10.1104/pp.20.011067608180
Xu J., F. Belanger, and B. Huang 2008, Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environ Exp Bot 63:240-247. doi:10.1016/j.envexpbot.2007.11.011 10.1016/j.envexpbot.2007.11.011
Yao C., J. Dong, K. Ren, L. Sun, H. Wang, J. Zhang, H. Wang, X. Xu, B. Yao, H. Zhou, L. Zhao, and R. Peng 2023, Accumulative effects of multifrequency microwave exposure with 1.5 GHz and 2.8 GHz on the structures and functions of the immune system. Int J Environ Res Public Health 20:4988. doi:10.3390/ijerph20064988 10.3390/ijerph2006498810049199
Zeng S.W., Q.L. Huang, and S.M. Zhao 2014, Effects of microwave irradiation dose and time on Yeast ZSM-001 growth and cell membrane permeability. Food Control 46:360-367. doi:10.1016/j.foodcont.2014.05.053 10.1016/j.foodcont.2014.05.053
Zhao L., R. Peng, Y. Gao, S. Wang, L. Wang, Q. Dong, X. Xu, and J. Ma 2007, Mitochondria morphologic changes and metabolic effects of rat hippocampus after microwave irradiation. Chin J Radiol Med Prot 27. doi:10.3760/CMA.J.ISSN.0254-5098.2007.06.033 10.3760/CMA.J.ISSN.0254-5098.2007.06.033
Zhu L., C. Yan, and Z. Li 2016, Microalgal cultivation with biogas slurry for biofuel production. Bioresour Technol 220:629-636. doi:10.1016/j.biortech.2016.08.111 10.1016/j.biortech.2016.08.11127599623
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :3
  • Pages :217-225
  • Received Date : 2023-01-16
  • Revised Date : 2023-06-30
  • Accepted Date : 2023-07-03
  • NRF
  • crossref crossmark
  • crossref cited-by
  • crossref funder-registry
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close