All Issue

2023 Vol.32, Issue 4 Preview Page

Original Articles

31 October 2023. pp. 353-358
Abstract
References
1
Albadwawi M.A., Z.F.R. Ahmed, S.S. Kurup, M.A. Alyafei, and A. Jaleel 2022, A comparative evaluation of aquaponic and soil systems on yield and antioxidant levels in basil, an important food plant in Lamiaceae. Agronomy 12:3007. doi:10.3390/agronomy12123007 10.3390/agronomy12123007
2
Avgoustaki D.D. 2019, Optimization of photoperiod and quality assessment of basil plants grown in a small-scale indoor cultivation system for reduction of energy demand. Energies 12:3980. doi:10.3390/en12203980 10.3390/en12203980
3
Azad M.O.K., K.H. Kjaer, M. Adnan, M.T. Naznin, J.D. Lim, I.J. Sung, C.H. Park, and Y.S. Lim 2020, The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red LED light in an urban plant factory. Agriculture 10:28. doi:10.3390/agriculture10020028 10.3390/agriculture10020028
4
Chowdhury M., M.A. Gulandaz, S. Islam, M.N. Reza, M. Ali, M.N. Islam, S.U. Park, and S.O. Chung 2023, Lighting conditions affect the growth and glucosinolate contents of Chinese kale leaves grown in an aeroponic plant factory. Hortic Environ Biotechnol 64:97-113. doi:10.1007/s13580-022-00472-0 10.1007/s13580-022-00472-0
5
Ciriello M., L. Formisano, Y. Rouphael, S. de Pascale, and M. Kacira 2023, Effects of daily light integral and photoperiod with successive harvests on basil yield, morpho-physiological characteristics, and mineral composition in vertical farming. Sci Hortic 322:112396. doi:10.1016/j.scienta.2023.112396 10.1016/j.scienta.2023.112396
6
Copolovici L., A. Lupitu, C. Moisa, M. Taschina, and D.M. Copolovici 2021, The effect of antagonist abiotic stress on bioactive compounds from basil (Ocimum basilicum). Appl Sci 11:9282. doi:10.3390/app11199282 10.3390/app11199282
7
Cui J., S. Song, J. Yu, and H. Liu 2021, Effect of daily light integral on cucumber plug seedlings in artificial light plant factory. Horticulturae 7:139. doi:10.3390/horticulturae7060139 10.3390/horticulturae7060139
8
De Andrade M.V.S., R.D. de Castro, D. da Silva Cunha, V.G. Neto, M.G.A. Carosio, A.G. Ferreira, L.C. de Souza-Neta, L.G. Fernandez, and P.R. Ribeiro 2021, Stevia rebaudiana (Bert.) Bertoni cultivated under different photoperiod conditions: Improving physiological and biochemical traits for industrial applications. Ind Crops Prod 168:113595. doi:10.1016/j.indcrop.2021.113595 10.1016/j.indcrop.2021.113595
9
Elkins C., and M.W. van Iersel 2020, Longer photoperiods with the same daily light integral improve growth of rudbeckia seedlings in a greenhouse. HortScience 55:1676-1682. doi:10.21273/HORTSCI15200-20 10.21273/HORTSCI15200-20
10
Engelsma G. 1978, Phenol synthesis and photomorphogenesis. Philips Tech Rev 38:89-100.
11
Engelsma G. 1979, Effect of daylength on phenol metabolism in the leaves of Salvia occidentalis. Plant Physiol 63:765-768. doi:10.1104/pp.63.4.765 10.1104/pp.63.4.76516660808PMC542913
12
Fu W., P. Li, and Y. Wu 2012, Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic 135:45-51. doi:10.1016/j.scienta.2011.12.004 10.1016/j.scienta.2011.12.004
13
Gao M., R. He, R. Shi, Y. Zhang, S. Song, W. Su, and H. Liu 2021, Differential effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy 11:537. doi:10.3390/agronomy11030537 10.3390/agronomy11030537
14
Hernández-Adasme C., R. Palma-Dias, and V.H. Escalona 2023, The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae 9:493. doi:10.3390/horticulturae9040493 10.3390/horticulturae9040493
15
Kim J.-K., H.-M. Kang, D.-C. Jang, J.-K. Na, and K.-Y. Choi 2020, Effect of light intensity and temperature on the growth and functional compounds in the baby leaf vegetable plant Peucedanum japonicum Thunb. Korean J Hortic Sci Technol 38:822-829. doi:10.7235/HORT.20200074 10.7235/HORT.20200074
16
Kim S., S. Noh, and J. Park 2022, Increased antioxidants of Agastache rugosa by the night interruption time. J Bio-Env Con 31:319-324. doi:10.12791/KSBEC.2022.31.4.319 10.12791/KSBEC.2022.31.4.319
17
Li T., H. Liu, and F. Zhou 2023, Effects of light intensity and photoperiod on the fresh locking and quality of hydroponic arugula in the harvesting period. Agronomy 13:1667. doi:10.3390/agronomy13071667 10.3390/agronomy13071667
18
Lichtenthaler H.K., and C. Buschmann 2001, Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4.3.1-F4.3.8. doi:10.1002/0471142913.faf0403s01 10.1002/0471142913.faf0403s01
19
Marwat S.K., F. Rehman, M.S. Khan, S. Ghulam, N. Anwar, G. Mustafa, and K. Usman 2011, Phytochemical constituents and pharmacological activities of sweet basil - Ocimum basilicum L. (Lamiaceae). Asian J Chem 23:3773-3782.
20
Palmer S., and M.W. van Iersel 2020, Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy 10:1659. doi:10.3390/agronomy10111659 10.3390/agronomy10111659
21
Santin M., M. Becagli, M.C. Sciampagna, A. Mannucci, A. Ranieri, and A. Castagna 2023, Integrative effect of UV-B and some organic amendments on growth, phenolic and flavonoid compounds, and antioxidant activity of basil (Ocimum basilicum L.) plants. Horticulturae 9:894. doi:10.3390/horticulturae9080894 10.3390/horticulturae9080894
22
Severo J., A. Tiecher, F.C. Chaves, J.A. Silva, and C.V. Rombaldi 2011, Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem 126:995-1000. doi:10.1016/j.foodchem.2010.11.107 10.1016/j.foodchem.2010.11.107
23
Shahrajabian M.H., W. Sun, and Q. Cheng 2020, Chemical components and pharmacological benefits of basil (Ocimum basilicum): A review. Int J Food Prop 23:1961-1970. doi:10.1080/10942912.2020.1828456 10.1080/10942912.2020.1828456
24
Sipos L., L. Balázs, G. Székely, A. Jung, S. Sárosi, P. Radácsi, and L. Csambalik 2021, Optimization of basil (Ocimum basilicum L.) production in LED light environments - a review. Sci Hortic 289:110486. doi:10.1016/j.scienta.2021.110486 10.1016/j.scienta.2021.110486
25
Sutulienė R., K. Laužikė, T. Pukas, and G. Samuolienė 2022, Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce. Plants 11:1709. doi:10.3390/plants11131709 10.3390/plants1113170935807661PMC9269566
26
Taie H.A.A., Z.A.-E.R. Salama, and S. Radwan 2010, Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not Bot Horti Agrobot Cluj Napoca 38:119-127. doi:10.15835/nbha3813534
27
Tso T., M. Kasperbauer, and T. Sorokin 1970, Effect of photoperiod and end-of-day light quality on alkaloids and phenolic compounds of tobacco. Plant Physiol 45:330-333. doi:10.1104/pp.45.3.330 10.1104/pp.45.3.3305423471PMC396407
28
Vodnik D., Ž. Vogrin, H. Šircelj, M.C. Grohar, A. Medič, K. Carović-Stanko, T. Safner, and B. Lazarević 2023, Phenotyping of basil (Ocimum basilicum L.) illuminated with UV-A light of different wavelengths and intensities. Sci Hortic 309:111638. doi:10.1016/j.scienta.2022.111638 10.1016/j.scienta.2022.111638
29
Xu W., N. Lu, M. Kikuchi, and M. Takagaki 2021, Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (Tropaeolum majus L.) in plant factories. Plants 10:1203. doi:10.3390/plants10061203 10.3390/plants1006120334204820PMC8231634
30
Yan Z., D. He, G. Niu, and H. Zhai 2019, Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci Hortic 248:138-144. doi:10.1016/j.scienta.2019.01.002 10.1016/j.scienta.2019.01.002
31
Yan Z., L. Wang, Y. Wang, Y. Chu, D. Lin, and Y. Yang 2021, Morphological and physiological properties of greenhouse-grown cucumber seedlings as influenced by supplementary light-emitting diodes with same daily light integral. Horticulturae 7:361. doi:10.3390/horticulturae7100361 10.3390/horticulturae7100361
32
Zhang B., H. Zhang, Q. Jing, and J. Wang 2020, Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.). Ecol Indic 115:106448. doi:10.1016/j.ecolind.2020.106448 10.1016/j.ecolind.2020.106448
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :4
  • Pages :353-358
  • Received Date : 2023-10-06
  • Revised Date : 2023-10-19
  • Accepted Date : 2023-10-19