All Issue

2017 Vol.26, Issue 4 Preview Page
30 November 2017. pp. 268-275
Abstract
References
1
Acock, B., D.W. Hand, J.H.M. Thornley, and J.W. Wilson. 1976. Photosynthesis in stands of green peppers. An application of empirical and mechanistic models to controlled environment data. Ann. Bot. 40:1293-1307.
10.1093/oxfordjournals.aob.a085250
2
Baker, J.T. and L.H. Allen Jr. 1993. Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus. Vegetatio 104:239-260.
10.1007/BF00048156
3
Bugbee, B. 1992. Steady-state canopy gas exchange: system design and operation. HortScience 27:770-776.
10.21273/HORTSCI.27.7.77011537622
4
Caliskan, O., M.S. Odabas, and C. Cirak. 2009. The modeling of the relation among the temperature and light intensity of groth in Ocimum basilicum L. J. Med. Plant. Res. 3:965-977.
5
Caporn, S.J.M. 1989. The effects of oxides of nitrogen and carbon dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L.). New Phytol. 111:473-481.
10.1111/j.1469-8137.1989.tb00710.x
6
Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90.
10.1007/BF0038623124306196
7
Green, C.F. 1987. Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agric. For. Meteorol. 41:207-248.
10.1016/0168-1923(87)90080-3
8
Heuvelink, E. 1996. Tomato growth and yield: quantitative analysis and synthesis. Dissertation. Wageningen Agric. Univ., Wageningen, pp. 326.
9
Johnson, I.R., J.H.M. Thornley, J.M. Frantz, and B. Bugbee. 2010. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and CO2. Ann. Bot. 106:735-749.
10.1093/aob/mcq18320861273PMC2958795
10
Jones, J.W., E. Dayan, L.H. Allen, H. Van Keulen, and H. Challa. 1991. A dynamic tomato growth and yield model (TOMGRO). Trans. ASABE. 34:663-672.
10.13031/2013.31715
11
Jones, H.G. and F. Tardieu. 1998. Modelling water relations of horticultural crops: a review. Sci. Hortic. 74:21-45.
10.1016/S0304-4238(98)00081-8
12
Kaitala, V., P. Hari, E. Vapaavuori, and R. Salminen. 1982. A dynamic model for photosynthesis. Ann. Bot. 50:385-396.
10.1093/oxfordjournals.aob.a086378
13
Kim, S. and H. Leith. 2003. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann. Bot. 91:771-781.
10.1093/aob/mcg08012730065PMC4242386
14
Park, K.S., K. Bekhzod, J.K. Kwon, and J.E. Son. 2016. Development of a coupled photosynthetic model of basil hydroponically grown in plant factories. Hortic. Environ. Biotechnol. 57:20-26.
10.1007/s13580-016-0019-7
15
Larsen, R.U. 1990. Plant growth modelling by light and temperature. Acta Hortic. 272:235-242.
10.17660/ActaHortic.1990.272.34
16
Leith, J.H. and C.C. Pasian. 1990. A model for net photosynthesis of rose leaves as a function of photosynthetically active radiation, leaf temperature, and leaf age. J. Amer. Soc. Hort. Sci. 115:486-491.
10.21273/JASHS.115.3.486
17
Lloyd, J. and J.A. Taylor. 1994. On the temperature dependence of soil respiration. Func. Ecol. 8:315-323.
10.2307/2389824
18
Marcelis, L.F.M., E. Heuvelink, and J. Goudriaan. 1998. Modelling biomass production and yield of horticultural crops: a review. Sci. Hortic. 74:83-111.
10.1016/S0304-4238(98)00083-1
19
Marshall, B. and P.V. Biscoe. 1980. A model for C3 leaves describing the dependence of net photosynthesis on irradiance. J. Exp. Bot. 31:29-39.
10.1093/jxb/31.1.29
20
Medina-Ruíz, C.A., I.A. Mercado-Luna, G.M. Soto-Zarazúa, I. Torres-Pacheco, and E. Rico-García. 2011. Mathematical modeling on tomato plants: A review. Afr. J. Agric. Res. 6:6745-6749.
10.5897/AJARX11.001
21
Mitchell, C.A. 1992. Measurement of photosynthetic gas exchange in controlled environments. HortScience 27:764-767.
10.21273/HORTSCI.27.7.76411537621
22
Noe, S.M. and C. Giersch. 2004. A simple dynamic model of photosynthesis in oak leaves: coupling leaf conductance and photosynthetic carbon fixation by a variable intercellular CO2 pool. Funct. Plant Biol. 31:1195-1204.
10.1071/FP03251
23
Prusinkiewicz, P. 1998. Modelling of spatial structure and development of plants in horticulture: a review. Sci. Hortic. 74:113-149.
10.1016/S0304-4238(98)00084-3
24
Shimizu, H., M. Kushida, and W. Fujinuma. 2008. A growth model for leaf lettuce under greenhouse envrionments. Environ. Control Biol. 46:211-219.
10.2525/ecb.46.211
25
Taormina R. and K.W. Chau. 2015. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinform. 17:99-113.
10.2166/hydro.2014.116
26
Thornley, J.H.M. 1974. Light fluctuations and photosynthesis. Ann. Bot. 38:363-373.
10.1093/oxfordjournals.aob.a084820
27
Vaidyanathan, S. 2015. 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int. J. Pharmtech. Res. 8:632-640.
28
Valladares, F., M.T. Allen, and R.W. Pearcy. 1997. Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occuring along a light gradient. Oecologia 111:505-514.
10.1007/s00442005026428308111
29
Yamazaki, K. 1982. Nutrient solution culture. Pak-kyo, Tokyo, p. 251.
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Protected Horticulture and Plant Factory
  • Journal Title(Ko) :시설원예ㆍ식물공장
  • Volume : 26
  • No :4
  • Pages :268-275
  • Received Date : 2017-09-20
  • Revised Date : 2017-09-29
  • Accepted Date : 2017-10-09