All Issue

2023 Vol.32, Issue 2 Preview Page

Original Articles

30 April 2023. pp. 106-114
Creech C.F., R.S. Henry, B.K. Fritz, and G.R. Kruger 2015, Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics. Weed Technol 29:298-310. doi:10.1614/WT-D-14-00049.1 10.1614/WT-D-14-00049.1
De Schampheleire M., D. Nuyttens, D. Dekeyser, P. Verboven, P. Spanoghe, W. Cornelis, D. Gabriels, and W. Steurbaut 2009, Deposition of spray drift behind border structures. Crop Prot 28:1061-1075. doi:10.1016/j.cropro.2009.08.006 10.1016/j.cropro.2009.08.006
Gregorio E., X. Torrent, S. Planas, and J.R. Rosell-Polo 2019, Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique. Sci Total Environ 687:967-977. doi:10.1016/j.scitotenv.2019.06.151 10.1016/j.scitotenv.2019.06.15131412500
Guler H., H. Zhu, H.E. Ozkan, R.C. Derksen, Y. Yu, and C.R. Krause 2007, Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Trans ASABE 50:745-754. doi:10.13031/2013.23129 10.13031/2013.23129
Hewitt A.J., D.R. Johnson., J.D. Fish, C.G. Hermansky, and D.L. Valcore 2002, Development of the spray drift task force database for aerial applications. Environ Toxicol Chem 21:648-658. doi:10.1002/etc.5620210326 10.1002/etc.562021032611878479
Hong S.W., J.S. Park, H.N. Jeong, S.Y. Lee, L.Y. Choi, L. Zhao, and H. Zhu 2021, Fluid dynamic approaches for prediction of spray drift from ground pesticide applications: a review. Agronomy 11:1182. doi:10.3390/agronomy11061182 10.3390/agronomy11061182
Jensen P.K., and M.H. Olesen 2014, Spray mass balance in pesticide application: a review. Crop Prot 61:23-31. doi:10.1016/j.cropro.2014.03.006 10.1016/j.cropro.2014.03.006
Jin Y.D., H.D. Lee, Y.K. Park, J.B. Kim, and O.K. Kwon 2008. Drift and distribution properties of pesticide spray solution applied aerially by manned-helicopter. Korean J Pestic Sci 12:351-356. (in Korean)
Kim C.J., R.K. Lee, X. Yuan, M. Kim, H.J. Shin, L.S. Kim, K.S. Kyung, and H.H. Noh 2022, Residual pattern of pesticides drifted by unmanned aerial vehicle (UAV) spraying and drift reduction using maize (Zea mays L.). Korean J Pestic Sci 26:103-120. (in Korean) doi:10.7585/kjps.2022.26.2.103 10.7585/kjps.2022.26.2.103
Kim R.W., and S.W. Hong 2019, Applicability of optical particle counters for measurement of airborne pesticide spray drift. J Korean Soc Agric Eng 61:79-87. (in Korean) doi:10.5389/KSAE.2019.61.5.079 10.5389/KSAE.2019.61.5.079
KOSIS 2022, Statistics KOREA Government Official Work Conference. Available via Accessed 20 Nov 2022.
KREI 2021, Agricultural Outlook 2021, Korea Rural Economic Institute (KREI), Naju, Korea.
Noh H.H., C.J. Kim, B.C. Moon, T.G. Kim, D. Kim, M.S. Oh, D.S. Choi, Y.Y. Kim, H.S. Song, and K.S. Kyung 2020, Drift patterns of aerial spraying pesticide caused by formulations and nozzles. Korean J Pestic Sci 24:278-285. (in Korean) doi:10.7585/kjps.2020.24.3.278 10.7585/kjps.2020.24.3.278
Nuyttens D., K. Baetens, M. De Schampheleire, and B. Sonck 2007, Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333-345. doi:10.1016/j.biosystemseng.2007.03.001 10.1016/j.biosystemseng.2007.03.001
Park J.S., S.Y. Lee, L.Y. Choi, H.N. Jeong, H.H. Noh, S.-H. Yu, H.S. Song, and S.W. Hong 2021, Analyzing drift patterns of spray booms with different nozzle types and working pressures in wind tunnel. J Korean Soc Agric Eng 63:39-47. (in Korean) doi:10.5389/KSAE.2021.63.5.039 10.5389/KSAE.2021.63.5.039
Park J.S., S.Y. Lee, L.Y. Choi, S.W. Hong, H.H. Noh, and S.H. Yu 2022, Airborne-spray-drift collection efficiency of nylon screens: measurement and CFD analysis. Agronomy 12:2865 doi:10.3390/agronomy12112865 10.3390/agronomy12112865
Ramsdale B.K., and C.G. Messersmith 2017, Drift-reducing nozzle effects on herbicide performance. Weed Tech 15:453-460. doi:10.1614/0890-037X(2001)015[0453:DRNEOH]2.0.CO;2. 10.1614/0890-037X(2001)015[0453:DRNEOH]2.0.CO;2
RDA 2020, Manual of unmanned aerial vehicle for spraying pesticide. Rural Developmnet Administration(RDA), Jeonju, Korea.
Tang Q., R. Zhang, L. Chen, W. Deng, M. Xu, G. Xu, L. Li, and A. Hewitt 2020, Numerical simulation of the down wash flow field and droplet movement from an unmanned helicopter for crop spraying. Comput Electron Agric 174:105468. doi:10.1016/j.compag.2020.105468 10.1016/j.compag.2020.105468
Wang J., Y. Lan, H. Zhang, Y. Zhang, S. Wen, W. Yao, and J. Deng 2018. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. Int J Agric Biol Eng 11:5-12. doi:10.25165/j.ijabe.20181106.4038 10.25165/j.ijabe.20181106.4038
Zheng Y., S. Yang, X. Liu, J. Wang, T. Norton, J. Chen, and Y. Tan 2018, The computational fluid dynamic modeling of downwash flow field for a six-rotor UAV. Front Agric Sci Eng 5:159-167. doi:10.15302/J-FASE-2018216 10.15302/J-FASE-2018216
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :2
  • Pages :106-114
  • Received Date : 2023-01-12
  • Revised Date : 2023-02-28
  • Accepted Date : 2023-03-13