All Issue

2023 Vol.32, Issue 1 Preview Page

Original Articles

31 January 2023. pp. 23-33
Abstract
References
1
Ainsworth E.A., and K.M. Gillespie 2007, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875-877. 10.1038/nprot.2007.10217446889
2
Akula R., and G.A. Ravishankar 2011, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720-1731. doi:10.4161/psb.6.11.17613 10.4161/psb.6.11.1761322041989PMC3329344
3
Amrhein N., K. Apel, S. Baginsky, N. Buchmann, M. Geisler, F. Keller, C. Körner, E. Martinoia, L. Merbold, C. Müller, M. Paschke, and B. Schmid 2013, Plant Response to stress. In N Amrhein, F Keller, E Martinoia, eds, Response to Drought Stress from the Cellular to the Whole-Plant Level. ETH Library, Zurich, Switzerland, pp 72-84.
4
Bednarek P., M. Piślewska-Bednarek, A. Svatoš, B. Schneider, J. Doubský, M. Mansurova, M. Humphry, C. Consonni, R. Panstruga, A. Sanchez-Vallet, A. Molina, and P. Schulze-Lefert 2009, A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101-106. doi:10.1126/science.1163732 10.1126/science.116373219095900
5
Briskin D.P. 2000, Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507-514. doi:10.1104/pp.124.2.507 10.1104/pp.124.2.50711027701PMC1539282
6
Choi H.J., E.J. Kim, M.J. Han, N.I. Baek, D.H. Kim, H.G. Jung, and N.J. Kim 2007, Hepatoprotective effect of fermented Artemisia princeps PAMPANINI by lactic acid bacteria. Korean J Pharmacogn 38:245-253. (in Korean)
7
Chung K.S., J.H. Choi, N.I. Back, M.S. Choi, E.K. Kang, H.G. Chung, T.S. Jeong, and K.T. Lee 2010, Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Mol Nutr Food Res 54:1318-1328. doi:10.1002/mnfr.200900305 10.1002/mnfr.20090030520397191
8
Dewanto V., X. Wu, K.K. Adom, and R.H. Liu 2002, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010-3014. doi:10.1021/jf0115589 10.1021/jf011558911982434
9
Dijkwel P.P., P. Kock, R. Bezemer, P.J. Weisbeek, and S. Smeekens 1996, Sucrose represses the developmentally controlled transient activation of the plastocyanin gene in Arabidopsis thaliana seedlings. Plant Physiol 110:453-463. doi:10.1104/pp.110.2.455 10.1104/pp.110.2.45512226197PMC157740
10
Gao H., H. Wang, and J. Peng 2014, Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13k/Akt signaling pathway in HepG2 cancer cells. Cell Biochem Biophys 69:27-34. doi:10.1007/s12013-013-9762-x 10.1007/s12013-013-9762-x24068521
11
Gilberto C.R. 2011, Function of root border cells and their exudates on plant defense in hydroponic systems. PhD Dissertation, Arizona Univ., Tucson, AZ, USA, pp 14-15.
12
Guo R., G. Yuan, and Q. Wang 2011, Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci Hortic 128:159-165. doi:10.1016/j.scienta.2011.01.014 10.1016/j.scienta.2011.01.014
13
Guy C.L., J.L.A. Huber, and S.C. Huber 1992, Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100:502-508. doi:10.1104/pp.100.1.502 10.1104/pp.100.1.50216652990PMC1075578
14
Ikeda-Iwai M., M. Umehara, S. Satoh, and H. Kamada 2003, Stress‐induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107-114. doi:10.1046/j.1365-313x.2003.01702.x 10.1046/j.1365-313X.2003.01702.x12662313
15
Jabeen M., U. Jillani, B.A. Chaudhary, and M. Uzair 2016, Phytochemical and pharmacological studies of Phyla nodiflora (Verbenaceae): a review. Pak J Pharm Res 2:49-54. 10.22200/pjpr.2016149-54
16
Jefferson R., A. Goldsbrough, and M. Bevan 1990, Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol 14:995-1006. doi:10.1007/BF00019396 10.1007/BF000193962102881
17
Julia W., S. Smeekens, and J. Hanson 2010, Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610-1614. doi:10.1016/j.phytochem.2010.07.007 10.1016/j.phytochem.2010.07.00720696445
18
Kerepesi I., and G. Galiba 2000, Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482-487. doi:10.2135/cropsci2000.402482x 10.2135/cropsci2000.402482x
19
Lee J.Y., K.H. Son, J.H. Lee, and M.M. Oh 2022, Growth characteristics and bioactive compounds of dropwort subjected to high CO2 concentrations and water deficit. Hortic Environ Biotechnol 63:181-194. doi:10.1007/s13580-021-00376-5 10.1007/s13580-021-00376-5
20
Lee M.J., J.E. Son, and M.M. Oh 2013, Growth and phenolic content of sowthistle grown in a closed-type plant production system with a UV-A or UV-B lamp. Hortic Environ Biotechnol 54:492-500. doi:10.1007/s13580-013-0097-8 10.1007/s13580-013-0097-8
21
Miller N.J., and C.A. Rice-Evans 1996, Spectrophotometric determination of antioxidant activity. Redox Rep 2:161-171. doi:10.1080/13510002.1996.11747044 10.1080/13510002.1996.1174704427406072
22
Mosmann T. 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63. doi:10.1016/0022-1759(83)90303-4 10.1016/0022-1759(83)90303-46606682
23
Mun W., and D.J. Yu 2015, Crop physiology. In W Mun, DJ Yu, eds, Transport and storage of assimilation products. Knowpress, Seoul, Korea, pp 196-204. (in Korean)
24
Nayyar H., and D. Gupta 2006, Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106-113. doi:10.1016/j.envexpbot.2005.06.021 10.1016/j.envexpbot.2005.06.021
25
Oh M.M., E.E. Carey, and C.B. Rajashekar 2010, Regulated water deficits improve phytochemical concentration in lettuce. J Am Soc Hort Sci 135:223-229. doi:10.21273/JASHS.135.3.223 10.21273/JASHS.135.3.223
26
Pollock C., J. Farrar, D. Tomos, J. Gallagher, C. Lu, and O. Koroleva 2003, Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. J Exp Bot 54:489-494. doi:10.1093/jxb/erg037 10.1093/jxb/erg03712508059
27
Rook F., N. Gerrits, A. Kortstee, M. van Kampen, M. Borrias, P. Weisbeek, and S. Smeekens 1998, Sucrose-specific signaling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253-263. doi:10.1046/j.1365-313X.1998.00205.x 10.1046/j.1365-313X.1998.00205.x9721683
28
Ruan Y.L. 2014, Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33-67. doi:10.1146/annurev-arplant-050213-040251 10.1146/annurev-arplant-050213-04025124579990
29
Shin D.H., M.G. Choi, H.K. Lee, M.S Cho, S.B. Choi, G.S. Choi, and Y.I Park 2013, Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochem Biophys Res Commun 430:634-639. doi:10.1016/j.bbrc.2012.11.100 10.1016/j.bbrc.2012.11.10023220235
30
Slama I., T. Ghnaya, K. Hssini, D. Messedi, A. Savouré, and C. Abdelly 2007, Comparative study of mannitol and PEG osmotic stress effects on growth, and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot 61:10-17. doi:10.1016/j.envexpbot.2007.02.004 10.1016/j.envexpbot.2007.02.004
31
Solfanelli C., A. Poggi, E. Loreti, A. Alpi, and P. Perata 2006, Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637-646. doi:10.1104/pp.105.072579 10.1104/pp.105.07257916384906PMC1361330
32
Son K.H., and M.M. Oh 2013, Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. doi:10.21273/HORTSCI.48.8.988 10.21273/HORTSCI.48.8.988
33
Teng S., J. Keurentjes, L. Bentsink, M. Koornneef, and S. Smeekens 2005, Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840-1852. doi:10.1104/pp.105.066688 10.1104/pp.105.06668816299184PMC1310563
34
Tholakalabavi A., J.J. Zwiazek, and T.A. Thorpe 1994, Effect of mannitol and glucose-induced osmotic stress on growth, water relations and solute composition of cell suspension culture of poplar (Populus deltoides var. occidentalis) in relation to anthocyanin accumulation. In Vitro Cell Dev Biol - Plant 30:164-170. doi:10.1007/BF02632208 10.1007/BF02632208
35
Tognetti J. A., H.G. Pontis, and G.M.A. Martínez-Noël 2013, Sucrose signaling in plants: A world yet to be explored. Plant Signal Behav 8:e23316. doi:10.4161/psb.23316 10.4161/psb.2331623333971PMC3676498
36
Veillet F., C. Gaillard., P. Coutos-Thévenot, and S.L. Camera 2016, Targeting the AtCWIN1 gene to explore the role of invertases in sucrose transport in roots and during Botrytis cinerea infection. Front Plant Sci 7:1899-1918. doi:10.3389/fpls.2016.01899 10.3389/fpls.2016.0189928066461PMC5167757
37
Yang S.Y., C.O. Hong, H. Lee, S.Y. Park, B.G. Park, and K.W. Lee 2012, Protective effect of extracts of Perilla frutescens treated with sucrose on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in vitro and in vivo. Food Chem 133:337-343. doi:10.1016/j.foodchem.2012.01.037 10.1016/j.foodchem.2012.01.03725683404
38
Yeom M.S., H.J. Jeong, J.S. Lee, and M.M. Oh 2019, Improvement of bioactive compounds by exogenous sucrose absorbed via mugwort and kale roots. Hortic Sci Technol 37:1-9. doi:10.12972/kjhst.20190001 10.12972/kjhst.20190001
39
Zubek S., S. Mielcarek, and K. Turnau 2012, Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149-156. doi:10.1007/s00572-011-0391-1 10.1007/s00572-011-0391-121626142PMC3261393
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :1
  • Pages :23-33
  • Received Date : 2022-12-22
  • Revised Date : 2023-01-17
  • Accepted Date : 2023-01-18