Original Articles
Agnolucci P., C. Rapti, P. Alexander, V. de Lipsis, R.A. Holland, R. Eigenbrod, and P. Ekins 2020, Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat Food 1:562-571. doi:10.1038/s43016-020-00148-x
10.1038/s43016-020-00148-x37128016Ahammed G.J., X. Li, A. Liu, and S. Chen 2020, Physiological and defense responses of tea plants to elevated CO2: A review. Front Plant Sci 11:305. doi:10.3389/fpls.2020.00305
10.3389/fpls.2020.0030532265958PMC7103652Ahmed S. 2018, Toward the implementation of climate-resilient tea systems: Agroecological, physiological, and molecular innovations. Stress Physiology of Tea in the Face of Climate Change. Springer Singapore, Singapore, pp 333-355. doi:10.1007/978-981-13-2140-5_15
10.1007/978-981-13-2140-5_15Ahmed S., C.M. Orians, T.S. Griffin, S. Buckley, U. Unachukwu, A.E. Stratton, J.R. Stepp, A. Robbat, S. Cash, and E.J. Kennelly 2014a, Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality. AoB PLANTS 6. doi:10.1093/aobpla/plt054
10.1093/aobpla/plt054Ahmed S., J.R. Stepp, and X. Dayuan 2015, Cultivating botanicals for sensory quality. Botanicals: Methods and Techniques for Quality & Authenticity pp 15.
10.1201/b17987-4Ahmed S., J.R. Stepp, C. Orians, T. Griffin, C. Matyas, A. Robbat, S. Cash, D. Xue, C. Long, U. Unachukwu, S. Buckley, D. Small, and E. Kennelly 2014b, Effects of extreme climate events on tea (camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical china. PLoS ONE 9:e109126. doi:10.1371/journal.pone.0109126
10.1371/journal.pone.010912625286362PMC4186830Ahmed S., T. Griffin, S.B. Cash, W.Y. Han, C. Matyas, C. Long, C.M. Orians, J.R.Stepp, A. Robbat, and D. Xue 2018, Global climate change, ecological stress, and tea production. Stress Physiology of Tea in the Face of Climate Change, Springer Singapore, Singapore, pp 1-23. doi:10.1007/978-981-13-2140-5_1
10.1007/978-981-13-2140-5_1Ahmed S., T.S. Griffin, D. Kraner, M.K. Schaffner, D. Sharma, M. Hazel, A.R. Leitch, C.M. Orians, W. Han, J.R. Stepp, A. Robbat, C. Matyas, C. Long, D. Xue, R.F. Houser, and S.B. Cash 2019, Environmental factors variably impact tea secondary metabolites in the context of climate change. Front Plant Sci 10:939. doi:10.3389/fpls.2019.00939
10.3389/fpls.2019.0093931475018PMC6702324Al-Khayri J.M., S.M. Jain, and D.V. Johnson 2019, Advances in plant breeding strategies: nut and beverage crops. Springer International Publishing 4. doi:10.1007/978-3-030-23112-5
10.1007/978-3-030-23112-5Annual bulletin of statistics 2022, Available at: http://teaboard.portal.gov.bd/sites/default/files/files/teaboard.portal.gov.bd/publications/3538bca9_dfef_4202_8c9f_8b06bfa2c8c3/2023-02-22-09-38-11981703c340e513973b23bf3e7be553.pdf
Arefin M.R., and M.I.Hossain 2022, Present status and future prospects of tea production and research on varietal improvement in bangladesh. Turk J Agric - Food Sci Technol 10:2324-2333. doi:10.24925/turjaf.v10i12.2324-2333.5259
10.24925/turjaf.v10i12.2324-2333.5259Barman T.S., U. Baruah, and J.K. Saikia 2008, Irradiance influences tea leaf (Camellia sinensis L.) photosynthesis and transpiration. Photosynthetica 46:618-621. doi:10.1007/s11099-008-0104-y
10.1007/s11099-008-0104-yBaruah P., and G. Handique 2021, Perception of climate change and adaptation strategies in tea plantations of Assam, India. Environ Monit Assess 193:165. doi:10.1007/s10661-021-08937-y
10.1007/s10661-021-08937-y33675435Beringer, T., M. Kulak, C. Müller, S. Schaphoff, and Y. Jans 2020, First process-based simulations of climate change impacts on global tea production indicate large effects in the World's major producer countries. Environ Res Lett 15:034023. doi:10.1088/1748-9326/ab649b
10.1088/1748-9326/ab649bBhagat R.M., K.Z. Ahmed, N. Gupta, and R.D. Baruah 2016, Report of the working group on climate change of the FAO intergovernmental group on tea. Available at: https://www.researchgate.net/profile/Niladri-Gupta/publication/303665816_Report_of_the_WG_on_Climate_Change_of_the_FAO_IGG_on_Tea/links/57e15fee08aecd35d4a0714c/Report-of-the-WG-on-Climate-Change-of-the-FAO-IGG-on-Tea.pdf
Boehm R., S. Cash, B. Anderson, S. Ahmed, T. Griffin, A. Robbat, J. Stepp, W. Han, M. Hazel, and C. Orians 2016, Association between empirically estimated monsoon dynamics and other weather factors and historical tea yields in china: results from a yield response model. Climate 4:20. doi:10.3390/cli4020020
10.3390/cli4020020Borthakur D., B. Wang, L.W. Meinhardt, L. Zhou, H. Tan, S. Borchetia, W. Fang, and D. Zhang 2023, Multiple distinctive lineages of assam tea (camellia sinensis var. assamica) from india and china revealed by single nucleotide polymorphism markers. Beverage Plant Res 3:20. doi:10.48130/BPR-2023-0020
10.48130/BPR-2023-0020Cao Z., J. Wang, Y. Liu, J. Zhao, Y. Song, and B. Zhao 2024, Multidimensional evaluation and service strategy analysis of hazard warning and risk reduction. Front Earth Sci 12:1362906. doi:10.3389/feart.2024.1362906
10.3389/feart.2024.1362906Chen L., Z. Apostolides, Z.M. Chen, S.C. Das, S. Das, and M. Hazarika 2012, Breeding of the tea plant (Camellia sinensis) in India. Global tea breeding: achievements, challenges and perspectives pp.69-124. doi:10.1007/978-3-642-31878-8_3
10.1007/978-3-642-31878-8_3Chen L., Z.X. Zhou, and Y.J. Yang 2007, Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154:239-248. doi:10.1007/s10681-006-9292-3
10.1007/s10681-006-9292-3Chen M., X. Zhu, Y. Zhang, Z. Du, X. Chen, X. Kong, W. Sun, and C. Chen 2020, Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Sci Rep 10:6696. doi:10.1038/s41598-020-63683-4
10.1038/s41598-020-63683-432317754PMC7174317Cherop M.R. 2015, Formulation of Trichoderma harzianum and its comparative storage stability in different substrates for the management of armillaria root rot of tea (Doctoral dissertation, Egerton University)
Cui L., M. He, Z. Zou, C. Yao, S. Wang, J. An, and X. Wang 2022, The influence of climate change on droughts and floods in the Yangtze river basin from 2003 to 2020. Sensors 22:8178. doi:10.3390/s22218178
10.3390/s2221817836365876PMC9658109Damayanthi M., A. Mohotti, and S. Nissanka 2011, Comparison of tolerant ability of mature field grown tea (camellia sinensis L.) cultivars exposed to a drought stress in passara area. Trop Agric Res 22:66. doi:10.4038/tar.v22i1.2671
10.4038/tar.v22i1.2671Das A.C., R. Noguchi, and T. Ahamed 2021, An assessment of drought stress in tea estates using optical and thermal remote sensing. Remote Sens 13:2730. doi:10.3390/rs13142730
10.3390/rs13142730De Silva T.B.Y.A., and R.M.S.D. Rathnayaka 2014, Impact of good agricultural practices on technical efficiency of Tea small holders. In Proceedings of the Research Symposium on Value Addition for Sustainable Development, Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka pp 11-12
Duncan J.M.A., S.D. Saikia, N. Gupta, and E.M. Biggs 2016, Observing climate impacts on tea yield in Assam, India. Appl Geogr 77:64-71. doi:10.1016/j.apgeog.2016.10.004
10.1016/j.apgeog.2016.10.004Durighello R., M. Luengo, W. Ono, F. Han, Y. Zou, Y. Chen, C. Wang, S. Shimizu, K. Uesugi, K. Yamaguchi, and J.H. Ryu 2021, Tea landscapes of Asia: A thematic study. Available at: https://openarchive.icomos.org/id/eprint/2530/1/Tea%20Landscapes%20of%20Asia-F-WEB%20%281%29.pdf
Ebi K.L., and J.J. Hess 2020, Health risks due to climate change: inequity in causes and consequences: study examines health risks due to climate change. Health Affairs 39:2056-2062. doi:10.1377/hlthaff.2020.01125
10.1377/hlthaff.2020.0112533284705Ebi K.L., J. Vanos, J.W. Baldwin, J.E. Bell, D.M. Hondula, N.A. Errett, K. Hayes, C.E. Reid, S. Saha, J. Spector, and P. Berry 2021, Extreme Weather and Climate Change: Population Health and Health System Implications. Annu Rev Public Health 42:293-315. doi:10.1146/annurev-publhealth-012420-105026
10.1146/annurev-publhealth-012420-10502633406378PMC9013542Ekanayake P.B. 2003, Crop diversification and intercropping in tea lands. Trop Agric Res Ext 6:66-70.
10.4038/tare.v6i0.5442Etukudoh E.A., V.I. Ilojianya, O.B. Ayorinde, C.D. Daudu, A. Adefemi, and A. Hamdan 2024, Review of climate change impact on water availability in the USA and Africa. Int J Sci Res Arch 11:942-951. doi:10.30574/ijsra.2024.11.1.0169
10.30574/ijsra.2024.11.1.0169Fang Z.T., W.T. Yang, C.Y. Li, D. Li, J.J. Dong, D. Zhao, H.R. Xu, J.H. Ye, X.Q. Zheng, Y.R. Liang, and J.L. Lu 2021, Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. J Food Compos Anal 97:103772. doi:10.1016/j.jfca.2020.103772
10.1016/j.jfca.2020.103772Gunasekare M.T.K. 2012, Tea Plant (Camellia sinensis) Breeding in Sri Lanka, in: Global Tea Breeding. Springer, Berlin, Heidelberg, pp 125-176. doi:10.1007/978-3-642-31878-8_4
10.1007/978-3-642-31878-8_4Gunathilaka R.P.D., J.C.R. Smart, and C.M. Fleming 2017, The impact of changing climate on perennial crops: the case of tea production in Sri Lanka. Clim Change 140:577-592. doi:10.1007/s10584-016-1882-z
10.1007/s10584-016-1882-zGupta S., R. Bharalee, P. Bhorali, T. Bandyopadhyay, B. Gohain, N. Agarwal, P. Ahmed, H. Saikia, S. Borchetia, M.C. Kalita, A.K. Handique, and S. Das 2012, Identification of drought tolerant progenies in tea by gene expression analysis. Funct Integr Genomics 12:543-563. doi:10.1007/s10142-012-0277-0
10.1007/s10142-012-0277-022562548Habib-ur-Rahman M., A. Ahmad, A. Raza, M.U. Hasnain, H.F. Alharby, Y.M. Alzahrani, A.A. Bamagoos, K.R. Hakeem, S. Ahmad, W. Nasim, S. Ali, F. Mansour, and A. El Sabagh 2022, Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front Plant Sci 13:925548. doi:10.3389/fpls.2022.925548
10.3389/fpls.2022.92554836325567PMC9621323Hajiboland R. 2018, Nutrient deficiency and abundance in tea plants: metabolism to productivity. Springer, Singapore pp 173-215. doi:10.1007/978-981-13-2140-5_9
10.1007/978-981-13-2140-5_9Hajra N.G. 2019, Tea Research in India: Achievements and Current Priorities. J Tea Sci Res doi:10.5376/jtsr.2019.09.0002
10.5376/jtsr.2019.09.0002Han W., S. Ahmed, C. Wei, C.M. Orians, and M. Landi 2020, Responses of tea plants to climate change: from molecules to ecosystems. Front Plant Sci 11:594317. doi:10.3389/fpls.2020.594317
10.3389/fpls.2020.59431733329660PMC7732546Han W.Y., J.G. Huang, X. Li, Z.X. Li, G.J. Ahammed, P. Yan, and J.R. Stepp 2017, Altitudinal effects on the quality of green tea in east China: a climate change perspective. Eur Food Res Technol 243:323-330. doi:10.1007/s00217-016-2746-5
10.1007/s00217-016-2746-5Hao X., L. Wang, J. Zeng, Y. Yang, and X. Wang 2018, Response and adaptation mechanisms of tea plant to low-temperature stress. Springer, Singapore pp 39-61. doi:10.1007/978-981-13-2140-5_3
10.1007/978-981-13-2140-5_3Hasan R., A.F.M.S. Islam, M.A. Maleque, M.S. Islam, and M.M. Rahman 2023, Effect of drought stress on leaf productivity and liquor quality of tea: A Review. Asian J Soil Sci Plant Nutr 9:1-10. doi:10.9734/ajsspn/2023/v9i4187
10.9734/ajsspn/2023/v9i4187Hassan O., S. Kim, K.M. Kim, and T. Chang 2023, First report of leaf anthracnose caused by Colletotrichum camelliae on Tea plants (Camellia sinensis) in South Korea. Plant Dis 107:2881. doi:10.1094/PDIS-11-22-2622-PDN
10.1094/PDIS-11-22-2622-PDN37018215He H.F., K. Wei, J. Yin, and Y. Ye 2021, Insight into tea flavonoids: composition and chemistry. Food Rev Int 37:812-823. doi:10.1080/87559129.2020.1721530
10.1080/87559129.2020.1721530He X., L. Xu, C. Pan, C. Gong, Y. Wang, X. Liu, and Y. Yu 2020, Drought resistance of Camellia oleifera under drought stress: Changes in physiology and growth characteristics. PLOS ONE 15:e0235795. doi:10.1371/journal.pone.0235795
10.1371/journal.pone.023579532645115PMC7347177Huang W., M. Lin, J. Liao, A. Li, W. Tsewang, X. Chen, B. Sun, S. Liu, and P. Zheng 2022, Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil: A critical review. Horticulturae 8:660. doi:10.3390/horticulturae8070660
10.3390/horticulturae8070660Hwang J.G., and Y.D. Kim 2012, A survey low temperature damage of tea tree at South Korea in 2011. Korea J Agri For Meteorol 14:246-253. doi:10.5532/KJAFM.2012.14.4.246
10.5532/KJAFM.2012.14.4.246İzmirli Ş.G., and S. Gül 2023, Modeling of current and future distributions of Camellia sinensis in Türkiye under climate change. Theor Appl Climatol 154:1323-1332. doi:10.1007/s00704-023-04627-6
10.1007/s00704-023-04627-6Jagadeesh M. S, H. T. Vinay, V. Pavithra, and G. J. Abhishek 2024, India's tea export potential: Stirring up global trade opportunities. J Exp Agric Int 46:309-319. doi:10.9734/jeai/2024/v46i92827
10.9734/jeai/2024/v46i92827Jayasinghe S.L., and L. Kumar 2019, Modeling the climate suitability of tea [Camellia sinensis(L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric For Meteorol 272:102-117. doi:10.1016/j.agrformet.2019.03.025
10.1016/j.agrformet.2019.03.025Jayasinghe S.L., and L. Kumar 2023, Causes of tea land dynamics in Sri Lanka between 1995 and 2030. Reg Environ Change 23:127. doi:10.1007/s10113-023-02123-1
10.1007/s10113-023-02123-1Jayasinghe S.L., and L.Kumar 2021, Potential impact of the current and future climate on the yield, quality, and climate suitability for Tea [Camellia sinensis (L.) O. Kuntze]: A systematic review. Agronomy 11:619. doi:10.3390/agronomy 11040619
10.3390/agronomyJayasinghe S.L., and L. Kumar 2020, Climate change may imperil tea production in the four major tea producers according to climate prediction models. Agronomy 10:1536. doi:10.3390/agronomy10101536
10.3390/agronomy10101536Jayasinghe S.L., L. Kumar, and E. Kaliyadasa 2021, The future of high-quality Ceylon tea seems bleak in the face of climate change. Int J Biometeorol 65:1629-1646. doi:10.1007/s00484-021-02118-9
10.1007/s00484-021-02118-933782787Jayathilaka P.M.S., P. Soni, S.R. Perret, H.P.W. Jayasuriya, and V.M. Salokhe 2012, Spatial assessment of climate change effects on crop suitability for major plantation crops in Sri Lanka. Reg Environ Change 12:55-68. doi:10.1007/s10113-011-0235-8
10.1007/s10113-011-0235-8Jeong B.C., and Y.G. Park 2012, Tea plant (Camellia sinensis) breeding in Korea, in: Global tea breeding. Springer, Berlin, Heidelberg pp 263-288. doi:10.1007/978-3-642-31878-8_8
10.1007/978-3-642-31878-8_8Jeyaramraja P., P. Pius, R. Raj Kumar, and D. Jayakumar 2003, Soil moisture stress‐induced alterations in bioconstituents determining tea quality. J Sci Food Agric 83:1187-1191. doi:10.1002/jsfa.1440
10.1002/jsfa.1440Kaiho K. 2023, An animal crisis caused by pollution, deforestation, and warming in the late 21st century and exacerbation by nuclear war. Heliyon 9:e15221. doi:10.1016/j.heliyon.2023.e15221
10.1016/j.heliyon.2023.e1522137095985PMC10122020Chang K. 2015, World tea production and trade current and future development. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/c0ccb19d-1e9b-46e7-a3c3-b1917d1a7faf/content
Kariuki G.M., J. Njaramba, and C. Ombuki 2022, Tea production response to climate change in Kenya: An autoregressive distributed lag approach. Afr J Econ Rev 10:2-26. Available at: https://www.proquest.com/scholarly-journals/tea-production -response-climate-change-kenya/docview/3071714157/se-2
Kawai A. 1997, Prospect for integrated pest management in tea cultivation in Japan. Jpn Agric Res Q 31:213-218.
Kim K.R., S.H. Choi, P.I. Yi, J.G. Hwang, and S.H. Kang 2023, Predicting the Camellia Sinensis Growth Distribution Under Climate Change Scenarios. J Kor Tea Soc 30:40-48.
10.29225/jkts.2024.30.1.40Komariah Pitaloka D.D.A., I. Batubara, W. Nurcholis, A. Sandrawati, A. Setyawati, J. Syamsiyah, and W.S. Dewi 2021, The effects of soil temperature from soil mulching and harvest age on phenol, flavonoid and antioxidant contents of Java tea (Orthosiphon aristatus B.). Chem Biol Technol Agric 8:56. doi:10.1186/s40538-021-00256-1
10.1186/s40538-021-00256-1Korean Statistical Information Service (KOSIS) 2024, Special crop production statistics. Available at: https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114_2012_S0095&vw_cd=MT_ZTITLE&list_id=K1_38&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
Kotikot S.M., A. Flores, R.E. Griffin, J. Nyaga, J.L. Case, R. Mugo, A. Sedah, E. Adams, A. Limaye, and D.E. Irwin 2020, Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands. Int J Appl Earth Obs Geoinformation 84:101971. doi:10.1016/j.jag.2019.101971
10.1016/j.jag.2019.101971Kumar K.R., K. Dashora, N. Krishnan, S. Sanyal, H. Chandra, S. Dharmaraja, and V. Kumari 2021, Feasibility assessment of renewable energy resources for tea plantation and industry in India - A review. Renew Sustain Energy Rev 145:111083. doi:10.1016/j.rser.2021.111083
10.1016/j.rser.2021.111083Kumhar K.C., A. Babu, J.P. Arulmarianathan, B. Deka, M. Bordoloi, H. Rajbongshi, and P. Dey 2020, Role of beneficial fungi in managing diseases and insect pests of tea plantation. J Biol Pest Control 30:78. doi:10.1186/s41938-020-00270-9
10.1186/s41938-020-00270-9Larson C. 2015, Reading the tea leaves for effects of climate change. Science 348:953-954. doi:10.1126/science.348.6238.953
10.1126/science.348.6238.95326023112Lee J.E. 2015, Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chem pp 452-459. doi:10.1016/j.foodchem.2014.11.086
10.1016/j.foodchem.2014.11.08625529705Li L., M. Wang, S.S. Pokharel, C. Li, M.N. Parajulee, F. Chen, and W. Fang 2019, Effects of elevated CO2 on foliar soluble nutrients and functional components of tea, and population dynamics of tea aphid, Toxoptera aurantii. Plant Physiol Biochem 145:84-94. doi:10.1016/j.plaphy.2019.10.023
10.1016/j.plaphy.2019.10.02331675526Li X., G.J. Ahammed, L. Zhang, P. Yan, L. Zhang, and W.Y. Han 2018, Elevated carbon dioxide-induced perturbations in metabolism of Tea plants. Springer, Singapore pp 135-155. doi:10.1007/978-981-13-2140-5_7
10.1007/978-981-13-2140-5_7Li X., L. Zhang, G.J. Ahammed, Z.X. Li, J.P. Wei, C. Shen, P. Yan, L.P. Zhang, and W.Y. Han 2017, Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Sci Rep 7:7937. doi:10.1038/s41598-017-08465-1
10.1038/s41598-017-08465-128801632PMC5554289Li X., L.C. Stringer, and M. Dallimer 2022, The impacts of urbanisation and climate change on the urban thermal environment in Africa. Climate 10:164. doi:10.3390/cli10110164
10.3390/cli10110164Li Y., Q. Zhang, L. Ou, D. Ji, T. Liu, R. Lan, X. Li, and L. Jin 2020, Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide. Agronomy 10:915. doi:10.3390/agronomy10060915
10.3390/agronomy10060915Liao Y., X. Zhou, and L. Zeng 2022, How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 62:3751-3767. doi:10.1080/10408398.2020.1868970
10.1080/10408398.2020.186897033401945Liaqat W., C. Barutçular, M.U. Farooq, H. Ahmad, M.F. Jan, Z. Ahmad, H. Nawaz, and M. Li 2022, Climate change in relation to agriculture: A review. Span J Agric Res 20:e03R01. doi:10.5424/sjar/2022202-17742
10.5424/sjar/2022202-17742Lou W., K. Sun, Y. Zhao, S. Deng, and Z. Zhou 2021, Impact of climate change on inter‐annual variation in tea plant output in Zhejiang, China. Int J Climatol pp 41. doi:10.1002/joc.6700
10.1002/joc.6700Lou W., Z. Ji, K. Sun, and J. Zhou 2013, Application of remote sensing and GIS for assessing economic loss caused by frost damage to tea plantations. Precis Agric 14:606-620. doi:10.1007/s11119-013-9318-5
10.1007/s11119-013-9318-5Lu Y., Y. Hu, R.L. Snyder, and E.R. Kent 2019, Tea leaf's microstructure and ultrastructure response to low temperature in indicating critical damage temperature. Inf Process Agric 6:247-254. doi:10.1016/j.inpa.2018.09.004
10.1016/j.inpa.2018.09.004Majumder Basu A., B. Bera, and A. Rajan 2010, Tea statistics: global scenario. Inc J Tea Sci 8:121-124.
Maleque Md.A., J. Ferdous, A.A. Shitel, J. Ahmed, A.F.M.S. Islam, M.F. Mondal, K. Hassan, M.A.R. Choudhury, and H.R. Ishii 2024, Role of shade trees in conserving beneficial arthropods of biocontrol importance in tea ecosystem. Agrofor Syst 98:21-36. doi:10.1007/s10457-023-00886-4
10.1007/s10457-023-00886-4Malhi G.S., M. Kaur, and P.Kaushik 2021, Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13:1318. doi:10.3390/su13031318
10.3390/su13031318Mallik P., and T. Ghosh 2022, Impact of climate on tea production: a study of the Dooars region in India. Theor Appl Climatol 147:559-573. doi:10.1007/s00704-021-03848-x
10.1007/s00704-021-03848-xMallik P., and T. Ghosh 2023, Sub-regional variation in atmospheric and land variables regulates tea yield in the Dooars region of West Bengal, India. Int J Biometeorol 67:1591-1605. doi:10.1007/s00484-023-02521-4
10.1007/s00484-023-02521-437479848Mamun M.S.A., and M. Ahmed 2011, Integrated pest management in tea: prospects and future strategies in Bangladesh. J Plant Prot Res 3:1-13.
Maritim T.K., S.M. Kamunya, P. Mireji, C. Mwendia, R.C. Muoki, E.K. Cheruiyot, and F.N. Wachira 2015, Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. J Hortic Sci Biotechnol 90:395-400. doi:10.1080/14620316.2015.11513200
10.1080/14620316.2015.11513200Masson-Delmotte V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, and M. Huang 2021, Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change 2:2391. doi:10.1017/9781009157896
10.1017/9781009157896Masson-Delmotte V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, and S. Connors 2019, Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming 1:93-174.
Mohotti A.J., and D.W.Lawlor 2002, Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. J Exp Bot 53:313-322. doi:10.1093/jexbot/53.367.313
10.1093/jexbot/53.367.31311807135Mudau F.N., P. Soundy, and E.S. Du Toit 2007, Effects of nitrogen, phosphorus, and potassium nutrition on total polyphenol content of bush tea (Athrixia phylicoides L.) leaves in shaded nursery environment. HortScience 42:334-338. doi:10.21273/HORTSCI.42.2.334
10.21273/HORTSCI.42.2.334Mudau N.F., P. Soundy, and E.S. Du Toit 2005, Plant growth and development of bush tea as affected by nitrogen, phosphorus, and potassium nutrition. HortScience 40:1898-1901. doi:10.21273/HORTSCI.40.6.1898
10.21273/HORTSCI.40.6.1898Muench S., M. Bavorova, and P. Pradhan 2021, Climate change adaptation by smallholder tea farmers: a case study of nepal. Environ Sci Policy 116:136-146. doi:10.1016/j.envsci.2020.10.012
10.1016/j.envsci.2020.10.012Mujahid Hilal M.I. 2019, Sri Lanka's tea economy: issues and strategies. J Polit Law 13:1. doi:10.5539/jpl.v13n1p1
10.5539/jpl.v13n1p1Mukhopadhyay A., S. Das, and K. Basnet 2018, Pests of Indian Tea Plantations, in: Omkar (Ed.), Pests and Their Management. Springer, Singapore pp 649-695. doi:10.1007/978-981-10-8687-8_20
10.1007/978-981-10-8687-8_20Mukhopadhyay M., and T.K. Mondal 2017, Cultivation, Improvement, and Environmental Impacts of Tea. Oxford University Press. doi:10.1093/acrefore/9780199389414.013.373
10.1093/acrefore/9780199389414.013.373Munasinghe M., Y. Deraniyagala, N. Dassanayake, and H. Karunarathna 2017, Economic, social and environmental impacts and overall sustainability of the tea sector in Sri Lanka. Sustain Prod Consum 12:155-169. doi:10.1016/j.spc.2017.07.003
10.1016/j.spc.2017.07.003Muoki C.R., T.K. Maritim, W.A. Oluoch, S.M. Kamunya, and J.K. Bore 2020, Combating Climate Change in the Kenyan Tea Industry. Front Plant Sci 11:339. doi:10.3389/fpls.2020.00339
10.3389/fpls.2020.0033932269583PMC7109314Nasrullah Ali, S., M. Umar, L. Sun, M. Naeem, H. Yasmin, and N., Khan 2022, Flooding tolerance in plants: from physiological and molecular perspectives. Braz J Bot 45:1161-1176. doi:10.1007/s40415-022-00841-0
10.1007/s40415-022-00841-0Nelum K.G., P. Piyasena, M.G.S. Liyanage, N.C. Weerakoon, and M.S.D.L. De Silva 2023, Allelopathic potential of green manure, cover crops, mulching plants, and weeds found in tea plantations. Afr J Agric Res 19:962-968. doi:10.5897/AJAR2023.16483
10.5897/AJAR2023.16483Ng'etich W.K., W. Stephens, and C.O. Othieno 2001, Responses of tea to environment in kenya. 3. yield and yield distribution. Exp Agric 37:361-372. doi:10.1017/S0014479701003076
10.1017/S0014479701003076Niles M.T., and N.D.Mueller 2016, Farmer perceptions of climate change: Associations with observed temperature and precipitation trends, irrigation, and climate beliefs. Glob Environ Change 39:133-142. doi:10.1016/j.gloenvcha.2016.05.002
10.1016/j.gloenvcha.2016.05.002Oh S., and S.C. Koh 2014, Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field. Hortic Environ Biotechnol 55:363-371. doi:10.1007/s13580-014-0055-0
10.1007/s13580-014-0055-0Otieno W. 2002, Armillaria root rot of tea in Kenya: Characterization of the Pathogen and approaches to disease management. Wageningen University and Research. Available at: https://www.proquest.com/openview/d01ab5194bfb957 733189d049e40d6f4/1?cbl=2026366&diss=y&pq-origsite=gscholar&parentSessionId=gdqvx7azKP8IUAfc%2BXB4zsYlzfybJYBoGIypNlhVQ3s%3D
Pan S.Y., Q. Nie, H.C. Tai, X.L. Song, Y.F. Tong, L.J.F. Zhang, X.W. Wu, Z.H. Lin, Y.Y. Zhang, D.Y. Ye, Y. Zhang, X.Y. Wang, P.L. Zhu, Z.S. Chu, Z.L. Yu, and C. Liang 2022, Tea and tea drinking: China's outstanding contributions to the mankind. Chin Med 17:27. doi:10.1186/s13020-022-00571-1
10.1186/s13020-022-00571-135193642PMC8861626Pandey A.K., G.D. Sinniah, A. Babu, and A. Tanti 2021, How the global tea industry copes with fungal diseases - challenges and opportunities. Plant Dis 105:1868-1879. doi:10.1094/PDIS-09-20-1945-FE
10.1094/PDIS-09-20-1945-FE33734810Pang J., H. Li, F.Yu, J. Geng, and W. Zhang 2022, Environmental controls on water use efficiency in a hilly tea plantation in southeast China. Agric Water Manag 269:107678. doi:10.1016/j.agwat.2022.107678
10.1016/j.agwat.2022.107678Parida B.R., T. Mahato, and S. Ghosh 2024, Monitoring tea plantations during 1990-2022 using multi-temporal satellite data in Assam (India). Trop Ecol 65:387-398. doi:10.1007/s42965-023-00304-x
10.1007/s42965-023-00304-x37362781PMC10206575Pathak S.K. 2004, Population dynamics and feeding impact of some sucking pests on Darjeeling tea (Thesis). Available at: https://ir.nbu.ac.in/server/api/core/bitstreams/e08d8dc6-77be-4f36-81d3-d0ba90740a56/content
Peterson J., J. Dwyer, P. Jacques, W. Rand, R. Prior, and K. Chui 2004, Tea variety and brewing techniques influence flavonoid content of black tea. J Food Compos Anal 17:397-405. doi:10.1016/j.jfca.2004.03.022
10.1016/j.jfca.2004.03.022Pokharel S.S., H. Yu, W. Fang, M.N. Parajulee, and F. Chen 2023, Intercropping cover crops for a vital ecosystem service: a review of the biocontrol of insect pests in tea agroecosystems. Plants 12:2361. doi:10.3390/plants12122361
10.3390/plants1212236137375986PMC10304037Punyasiri P.A.N., I.S.B. Abeysinghe, V. Kumar, D. Treutter, D. Duy, C. Gosch, S. Martens, G. Forkmann, and T.C. Fischer 2004, Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22-30. doi:10.1016/j.abb.2004.08.003
10.1016/j.abb.2004.08.00315464723Qian W., J. Hu, X. Zhang, L. Zhao, Y. Wang, and Z. Ding 2018, Response of tea plants to drought stress, in: han, w.-y., li, x., ahammed, g.j. (eds.), stress physiology of tea in the face of climate change. Springer, Singapore pp 63-81. doi:10.1007/978-981-13-2140-5_4
10.1007/978-981-13-2140-5_4PMC6013902Raihan A. 2023, A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. J Environ Sci Econ 2:36-58. doi:10.56556/jescae.v2i3.587
10.56556/jescae.v2i3.587Rajan P., P. Natraj, M. Kim, M. Lee, Y.J. Jang, Y.J. Lee, and S.C. Kim 2024, Climate change impacts on and response strategies for kiwifruit production: A comprehensive review. Plants 13:2354. doi:10.3390/plants13172354
10.3390/plants1317235439273838PMC11396826Raman A. 2021, 'Discovery'of the tea plant Thea assamica (now, Camellia sinensis var. assamica) in the Indian territory in the 1830s. Indian J Nat Prod Resour 12:11-25. doi:10.56042/ijnpr.v12i1.30184
10.56042/ijnpr.v12i1.30184Rawat A., D. Kumar, and B.S. Khati 2024, A review on climate change impacts, models, and its consequences on different sectors: a systematic approach. J Water Clim Change 15:104-126. doi:10.2166/wcc.2023.536
10.2166/wcc.2023.536Rigden A.J., V. Ongoma, and P. Huybers 2020, Kenyan tea is made with heat and water: how will climate change influence its yield? Environ. Res Lett 15:044003. doi:10.1088/1748-9326/ab70be
10.1088/1748-9326/ab70beRokhmah D.N., D. Astutik, and H. Supriadi 2022, Cultivation technology for drought stress mitigation in tea plants: A review. IOP Conf Ser Earth Environ Sci 1038:012015. doi:10.1088/1755-1315/1038/1/012015
10.1088/1755-1315/1038/1/012015Roy S., A.K. Barooah, K.Z. Ahmed, R.D. Baruah, A.K. Prasad, and A. Mukhopadhyay 2020, Impact of climate change on tea pest status in northeast India and effective plans for mitigation. Acta Ecol Sin 40:432-442. doi:10.1016/j.chnaes.2019.08.003
10.1016/j.chnaes.2019.08.003Roy S., N. Muraleedharan, A. Mukhapadhyay, and G. Handique 2015, The tea mosquito bug, Helopeltis theivora Waterhouse (Heteroptera: Miridae): its status, biology, ecology and management in tea plantations. Int J Pest Manag 61:179-197. doi:10.1080/09670874.2015.1030002
10.1080/09670874.2015.1030002Rummukainen M. 2012, Changes in climate and weather extremes in the 21st century. WIREs Clim Change 3:115-129. doi:10.1002/wcc.160
10.1002/wcc.160Ruv Lemes M., G. Sampaio, L. Garcia-Carreras, G. Fisch, L.M. Alves, R. Bassett, R. Betts, J. Maksic, M.H. Shimizu, R.R. Torres, M. Guatura, L.S. Basso, and P.D.C. Bispo 2023, Impacts on South America moisture transport under Amazon deforestation and 2°C global warming. Sci Total Environ 905:167407. doi:10.1016/j.scitotenv.2023.167407
10.1016/j.scitotenv.2023.16740737777132Rwigema P.C. 2021, Combating climate change impacts in tea and coffee farming in East Africa: Theoretical perspective. Strateg J Bus Change Manag pp 8. doi:10.61426/sjbcm.v8i2.2013
10.61426/sjbcm.v8i2.2013Safaei Chaeikar S., S. Roofigari Haghighat, S. Marzvan, and R. Azadi 2020, Responses of some Iranian tea clones [Camellia sinensis (L.) O. Kuntze] to drought stress. Crop Breed J doi:10.22092/cbj.2020.351375.1057
Samarina L.S., L.S. Malyukova, A.M. Efremov, T.A. Simonyan, A.O. Matskiv, N.G. Koninskaya, R.S. Rakhmangulov, M.V. Gvasaliya, V.I. Malyarovskaya, A.V. Ryndin, Y.L. Orlov, W. Tong, and M.V. Hanke 2020, Physiological, biochemical and genetic responses of Caucasian tea (Camellia sinensis (L.) Kuntze) genotypes under cold and frost stress. PeerJ 8:e9787. doi:10.7717/peerj.9787
10.7717/peerj.978732923182PMC7457925Samynathan R., K. Shanmugam, C. Nagarajan, H. Murugasamy, R.V.J. Ilango, A. Shanmugam, B. Venkidasamy, and M. Thiruvengadam 2021, The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L.) O. Kuntze). Plant Gene 27:100316. doi:10.1016/j.plgene.2021.100316
10.1016/j.plgene.2021.100316Sarkar S., and S.E. Kabir 2016, A field survey of sucking tea pests and their control measures in a few tea gardens of terai region, West Bengal, India, 2016. Int J Sci Res IJSR 5:1343-1345. doi:10.21275/v5i3.NOV162125
10.21275/v5i3.NOV162125Sarma D. 2022, Economics of climate change and its impact on the tea industry in Assam. Available at: http://dispurcollege.digitallibrary.co.in/bitstream/123456789/216/1/Dr.%20Manalisha%20Bhattachryya.pdf#page=106
Sen S., M. Rai, D. Das, S. Chandra, and K. Acharya 2020, Blister blight a threatened problem in tea industry: A review. J King Saud Univ Sci 32:3265-3272. doi:10.1016/j.jksus.2020.09.008
10.1016/j.jksus.2020.09.008Seneviratne S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A.D. Luca, S. Ghosh, I. Iskandar, J. Kossin, S. Lewis, and F. Otto 2021, Weather and climate extreme events in a changing climate. Cambridge University Press pp 1513-1766. doi:10.1017/9781009157896.013
10.1017/9781009157896.013Shao C., C. Zhang, Z. Lv, and C. Shen 2021, Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Sci Hortic 281:109984. doi:10.1016/j.scienta.2021.109984
10.1016/j.scienta.2021.109984Shen J., D. Zhang, L. Zhou, X. Zhang, J. Liao, Y. Duan, B. Wen, Y. Ma, Y. Wang, W. Fang, and X. Zhu 2019, Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiol 39:1583-1599. doi:10.1093/treephys/tpz059
10.1093/treephys/tpz05931135909Shen J., S. Wang, L. Sun, Y. Wang, K. Fan, C. Li, H. Wang, C. Bi, F. Zhang, and Z. Ding 2022, Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering. Front Plant Sci 13:978531. doi:10.3389/fpls.2022.978531
10.3389/fpls.2022.97853136119581PMC9478477Song W.O., and O.K.Chun 2008, Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J Nutr 138:1543S-1547S. doi:10.1093/jn/138.8.1543S
10.1093/jn/138.8.1543S18641204Sujith R., and W. Hasula 2017, The climate change magazine of Sri Lanka. Available at: https://www.climatechange.lk/Publications_2016/NeelaHarithaMagazine_2017.pdf
Sun L.T., Y. Wang, and Z. Ding 2011, Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth. The Journal of Applied Ecology 22:2291-2296.
Sun Y., X. Zhang, F.W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren 2014, Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change 4:1082-1085. doi:10.1038/nclimate2410
10.1038/nclimate2410Tan X., H. Li, Z. Zhang, Y. Yang, Z. Jin, W. Chen, D. Tang, C. Wei, and Q. Tang 2023, Characterization of the difference between day and night temperatures on the growth, photosynthesis, and metabolite accumulation of tea seedlings. Int J Mol Sci 24:6718. doi:10.3390/ijms24076718
10.3390/ijms2407671837047691PMC10095163Tompong S., and K. Kunasakdakul 2014, Causal agent, symptoms and environmental factors of root rot disease of organic Assam tea in Mae Taeng district, Chiang Mai province. J Adv Agric Technol 10:767-777. Available at: http://www.ijat-aatsea.com
Trout K., G. Muttitt, D. Lafleur, T. Van De Graaf, R. Mendelevitch, L. Mei, and M. Meinshausen 2022, Existing fossil fuel extraction would warm the world beyond 1.5°C. Environ Res Lett 17:064010. doi:10.1088/1748-9326/ac6228
10.1088/1748-9326/ac6228Vargas Zeppetello L.R., L.A. Parsons, J.T. Spector, R.L. Naylor, D.S. Battisti, Y.J. Masuda, and N.H. Wolff 2020, Large scale tropical deforestation drives extreme warming. Environ Res Lett 15:084012. doi:10.1088/1748-9326/ab96d2
10.1088/1748-9326/ab96d2Venkatappa M., N. Sasaki, P. Han, and I. Abe 2021, Impacts of droughts and floods on croplands and crop production in Southeast Asia - An application of Google Earth Engine. Sci Total Environ 795:148829. doi:10.1016/j.scitotenv.2021.148829
10.1016/j.scitotenv.2021.14882934252779Waheed A., F.S. Hamid, A.H. Shah, H. Ahmad, A. Khalid, F.M. Abbasi, N. Ahmad, S. Aslam, and S. Sarwar 2012, Response of different tea (Camellia sinensis L.) clones against drought stress. J Mater Environ Sci 3:395-410. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6bc7a358dde4c23a21ddba48e881dad31bbb7f24
Wang H., G.J. Provan, and K. Helliwell 2000, Tea flavonoids: their functions, utilisation and analysis. Trends in Food Science & Technology 11:152-160. doi:10.1016/S0924-2244(00)00061-3
10.1016/S0924-2244(00)00061-3Wang P., X. Li, J. Tang, J. Yang, Y. Ma, D. Wu, and Z. Huo 2023, Determining the critical threshold of meteorological heat damage to tea plants based on MODIS LST products for tea planting areas in China. Ecol Inform 77:102235. doi:10.1016/j.ecoinf.2023.102235
10.1016/j.ecoinf.2023.102235Wang P., Y. Ma, J. Tang, D. Wu, H. Chen, Z. Jin, and Z. Huo 2021, Spring frost damage to tea plants can be identified with daily minimum air temperatures estimated by MODIS land surface temperature products. Remote Sens 13:1177. doi:10.3390/rs13061177
10.3390/rs13061177Wang S.Q., Z.C. Zheng, and T.X. Li 2013, Effects of ages of tea plantations on changes of nitrogen, phosphorus and potassium contents in soil aggregates. Journal of Plant Nutrition and Fertilizers 19:1393-1402. doi:10.11674/zwyf.2013.0613
Wasko C., R. Nathan, L. Stein, and D. O'Shea 2021, Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J Hydrol 603:126994. doi:10.1016/j.jhydrol.2021.126994
10.1016/j.jhydrol.2021.126994Wei Q., H.Y. Yu, C.D. Niu, R. Yao, S.F. Wu, Z. Chen, and C.F. Gao 2015, Comparison of insecticide susceptibilities of Empoasca vitis (Hemiptera: Cicadellidae) from three main tea-growing regions in China. J Econ Entomol 108:1251-1259. doi:10.1093/jee/tov063
10.1093/jee/tov06326470253Wen B., X. Zhang, S. Ren, Y. Duan, Y. Zhang, X. Zhu, Y. Wang, Y. Ma, and W. Fang 2020, Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns. Agrofor Syst 94:963-974. doi:10.1007/s10457-019-00463-8
10.1007/s10457-019-00463-8Wijeratne M.A. 1996, Vulnerability of Sri Lanka tea production to global climate change. Water, Air, and Soil Pollution 92:87-94. doi:10.1007/BF00175555
10.1007/BF00175555Wu Q., C. Sun, and J. Yang 2020, Economic analysis of the change of tea production layout in China. J Phys Conf Ser 1629:012048. doi:10.1088/1742-6596/1629/1/012048
10.1088/1742-6596/1629/1/012048Xia W., C. Li, J. Nie, S. Shao, K.M. Rogers, Y. Zhang, Z. Li, and Y. Yuan 2022, Stable isotope and photosynthetic response of tea grown under different temperature and light conditions. Food Chem 368:130771. doi:10.1016/j.foodchem.2021.130771
10.1016/j.foodchem.2021.13077134438181Xianchen Z., J. Huiguang, W. Xiaochun, and L. Yeyun 2020, The effects of different types of mulch on soil properties and tea production and quality. J Sci Food Agric 100:5292-5300. doi:10.1002/jsfa.10580
10.1002/jsfa.1058032542650Xiao Z., X. Huang, Z. Zang, and H. Yang 2018, Spatio-temporal variation and the driving forces of tea production in China over the last 30 years. J Geogr Sci 28:275-290. doi:10.1007/s11442-018-1472-2
10.1007/s11442-018-1472-2Yamashita H., Y. Tanaka, K. Umetsu, S. Morita, Y. Ono, T. Suzuki, T. Takemoto, A. Morita, and T. Ikka 2020, Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation. Front Plant Sci 11:556476. doi:10.3389/fpls.2020.556476
10.3389/fpls.2020.55647633240292PMC7677308Yan Y., S. Jeong, C.E. Park, N.D. Mueller, S. Piao, H. Park, J. Joo, X. Chen, X. Wang, J. Liu, and C. Zheng 2021, Effects of extreme temperature on China's tea production. Environ Res Lett 16:044040. doi:10.1088/1748-9326/abede6
10.1088/1748-9326/abede6Ye G.Y., Q. Xiao, M. Chen, X. Chen, Z. Yuan, D.W. Stanley, and C. Hu 2014, Tea: Biological control of insect and mite pests in China. Biol Control 68:73-91. doi:10.1016/j.biocontrol.2013.06.013
10.1016/j.biocontrol.2013.06.013Yoro K.O., and M.O. Daramola 2020, CO2 emission sources, greenhouse gases, and the global warming effect, in: Advances in Carbon Capture. Elsevier pp 3-28. doi:10.1016/B978-0-12-819657-1.00001-3
10.1016/B978-0-12-819657-1.00001-3You Q., Z. Jiang, X. Yue, W. Guo, Y. Liu, J. Cao, W. Li, F. Wu, Z. Cai, H. Zhu, T. Li, Z. Liu, J. He, D. Chen, N. Pepin, and P. Zhai 2022, Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C. Npj Clim Atmospheric Sci 5:80. doi:10.1038/s41612-022-00303-0
10.1038/s41612-022-00303-0Zhao Y., Y. Xu, L. Zhang, M. Zhao, and C. Wang 2022, Adapting tea production to climate change under rapid economic development in china from 1987 to 2017. Agronomy 12:3192. doi:10.3390/agronomy12123192
10.3390/agronomy12123192Zhou C., C. Zhu, H. Fu, X. Li, L. Chen, Y. Lin, Z. Lai, and Y. Guo 2019, Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLOS ONE 14:e0223609. doi:10.1371/journal.pone.0223609
10.1371/journal.pone.022360931600284PMC6786557- Publisher :The Korean Society for Bio-Environment Control
- Publisher(Ko) :(사)한국생물환경조절학회
- Journal Title :Journal of Bio-Environment Control
- Journal Title(Ko) :생물환경조절학회지
- Volume : 33
- No :4
- Pages :453-471
- Received Date : 2024-10-23
- Accepted Date : 2024-10-28
- DOI :https://doi.org/10.12791/KSBEC.2024.33.4.453