All Issue

2024 Vol.33, Issue 4 Preview Page

Original Articles

31 October 2024. pp. 453-471
Abstract
References
1

Agnolucci P., C. Rapti, P. Alexander, V. de Lipsis, R.A. Holland, R. Eigenbrod, and P. Ekins 2020, Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat Food 1:562-571. doi:10.1038/s43016-020-00148-x

10.1038/s43016-020-00148-x37128016
2

Ahammed G.J., X. Li, A. Liu, and S. Chen 2020, Physiological and defense responses of tea plants to elevated CO2: A review. Front Plant Sci 11:305. doi:10.3389/fpls.2020.00305

10.3389/fpls.2020.0030532265958PMC7103652
3

Ahmed S. 2018, Toward the implementation of climate-resilient tea systems: Agroecological, physiological, and molecular innovations. Stress Physiology of Tea in the Face of Climate Change. Springer Singapore, Singapore, pp 333-355. doi:10.1007/978-981-13-2140-5_15

10.1007/978-981-13-2140-5_15
4

Ahmed S., C.M. Orians, T.S. Griffin, S. Buckley, U. Unachukwu, A.E. Stratton, J.R. Stepp, A. Robbat, S. Cash, and E.J. Kennelly 2014a, Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality. AoB PLANTS 6. doi:10.1093/aobpla/plt054

10.1093/aobpla/plt054
5

Ahmed S., J.R. Stepp, and X. Dayuan 2015, Cultivating botanicals for sensory quality. Botanicals: Methods and Techniques for Quality & Authenticity pp 15.

10.1201/b17987-4
6

Ahmed S., J.R. Stepp, C. Orians, T. Griffin, C. Matyas, A. Robbat, S. Cash, D. Xue, C. Long, U. Unachukwu, S. Buckley, D. Small, and E. Kennelly 2014b, Effects of extreme climate events on tea (camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical china. PLoS ONE 9:e109126. doi:10.1371/journal.pone.0109126

10.1371/journal.pone.010912625286362PMC4186830
7

Ahmed S., T. Griffin, S.B. Cash, W.Y. Han, C. Matyas, C. Long, C.M. Orians, J.R.Stepp, A. Robbat, and D. Xue 2018, Global climate change, ecological stress, and tea production. Stress Physiology of Tea in the Face of Climate Change, Springer Singapore, Singapore, pp 1-23. doi:10.1007/978-981-13-2140-5_1

10.1007/978-981-13-2140-5_1
8

Ahmed S., T.S. Griffin, D. Kraner, M.K. Schaffner, D. Sharma, M. Hazel, A.R. Leitch, C.M. Orians, W. Han, J.R. Stepp, A. Robbat, C. Matyas, C. Long, D. Xue, R.F. Houser, and S.B. Cash 2019, Environmental factors variably impact tea secondary metabolites in the context of climate change. Front Plant Sci 10:939. doi:10.3389/fpls.2019.00939

10.3389/fpls.2019.0093931475018PMC6702324
9

Al-Khayri J.M., S.M. Jain, and D.V. Johnson 2019, Advances in plant breeding strategies: nut and beverage crops. Springer International Publishing 4. doi:10.1007/978-3-030-23112-5

10.1007/978-3-030-23112-5
11

Arefin M.R., and M.I.Hossain 2022, Present status and future prospects of tea production and research on varietal improvement in bangladesh. Turk J Agric - Food Sci Technol 10:2324-2333. doi:10.24925/turjaf.v10i12.2324-2333.5259

10.24925/turjaf.v10i12.2324-2333.5259
12

Barman T.S., U. Baruah, and J.K. Saikia 2008, Irradiance influences tea leaf (Camellia sinensis L.) photosynthesis and transpiration. Photosynthetica 46:618-621. doi:10.1007/s11099-008-0104-y

10.1007/s11099-008-0104-y
13

Baruah P., and G. Handique 2021, Perception of climate change and adaptation strategies in tea plantations of Assam, India. Environ Monit Assess 193:165. doi:10.1007/s10661-021-08937-y

10.1007/s10661-021-08937-y33675435
14

Beringer, T., M. Kulak, C. Müller, S. Schaphoff, and Y. Jans 2020, First process-based simulations of climate change impacts on global tea production indicate large effects in the World's major producer countries. Environ Res Lett 15:034023. doi:10.1088/1748-9326/ab649b

10.1088/1748-9326/ab649b
15

Bhagat R.M., K.Z. Ahmed, N. Gupta, and R.D. Baruah 2016, Report of the working group on climate change of the FAO intergovernmental group on tea. Available at: https://www.researchgate.net/profile/Niladri-Gupta/publication/303665816_Report_of_the_WG_on_Climate_Change_of_the_FAO_IGG_on_Tea/links/57e15fee08aecd35d4a0714c/Report-of-the-WG-on-Climate-Change-of-the-FAO-IGG-on-Tea.pdf

16

Boehm R., S. Cash, B. Anderson, S. Ahmed, T. Griffin, A. Robbat, J. Stepp, W. Han, M. Hazel, and C. Orians 2016, Association between empirically estimated monsoon dynamics and other weather factors and historical tea yields in china: results from a yield response model. Climate 4:20. doi:10.3390/cli4020020

10.3390/cli4020020
17

Borthakur D., B. Wang, L.W. Meinhardt, L. Zhou, H. Tan, S. Borchetia, W. Fang, and D. Zhang 2023, Multiple distinctive lineages of assam tea (camellia sinensis var. assamica) from india and china revealed by single nucleotide polymorphism markers. Beverage Plant Res 3:20. doi:10.48130/BPR-2023-0020

10.48130/BPR-2023-0020
18

Cao Z., J. Wang, Y. Liu, J. Zhao, Y. Song, and B. Zhao 2024, Multidimensional evaluation and service strategy analysis of hazard warning and risk reduction. Front Earth Sci 12:1362906. doi:10.3389/feart.2024.1362906

10.3389/feart.2024.1362906
19

Chen L., Z. Apostolides, Z.M. Chen, S.C. Das, S. Das, and M. Hazarika 2012, Breeding of the tea plant (Camellia sinensis) in India. Global tea breeding: achievements, challenges and perspectives pp.69-124. doi:10.1007/978-3-642-31878-8_3

10.1007/978-3-642-31878-8_3
20

Chen L., Z.X. Zhou, and Y.J. Yang 2007, Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154:239-248. doi:10.1007/s10681-006-9292-3

10.1007/s10681-006-9292-3
21

Chen M., X. Zhu, Y. Zhang, Z. Du, X. Chen, X. Kong, W. Sun, and C. Chen 2020, Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Sci Rep 10:6696. doi:10.1038/s41598-020-63683-4

10.1038/s41598-020-63683-432317754PMC7174317
22

Cherop M.R. 2015, Formulation of Trichoderma harzianum and its comparative storage stability in different substrates for the management of armillaria root rot of tea (Doctoral dissertation, Egerton University)

23

Cui L., M. He, Z. Zou, C. Yao, S. Wang, J. An, and X. Wang 2022, The influence of climate change on droughts and floods in the Yangtze river basin from 2003 to 2020. Sensors 22:8178. doi:10.3390/s22218178

10.3390/s2221817836365876PMC9658109
24

Damayanthi M., A. Mohotti, and S. Nissanka 2011, Comparison of tolerant ability of mature field grown tea (camellia sinensis L.) cultivars exposed to a drought stress in passara area. Trop Agric Res 22:66. doi:10.4038/tar.v22i1.2671

10.4038/tar.v22i1.2671
25

Das A.C., R. Noguchi, and T. Ahamed 2021, An assessment of drought stress in tea estates using optical and thermal remote sensing. Remote Sens 13:2730. doi:10.3390/rs13142730

10.3390/rs13142730
26

De Silva T.B.Y.A., and R.M.S.D. Rathnayaka 2014, Impact of good agricultural practices on technical efficiency of Tea small holders. In Proceedings of the Research Symposium on Value Addition for Sustainable Development, Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka pp 11-12

27

Duncan J.M.A., S.D. Saikia, N. Gupta, and E.M. Biggs 2016, Observing climate impacts on tea yield in Assam, India. Appl Geogr 77:64-71. doi:10.1016/j.apgeog.2016.10.004

10.1016/j.apgeog.2016.10.004
28

Durighello R., M. Luengo, W. Ono, F. Han, Y. Zou, Y. Chen, C. Wang, S. Shimizu, K. Uesugi, K. Yamaguchi, and J.H. Ryu 2021, Tea landscapes of Asia: A thematic study. Available at: https://openarchive.icomos.org/id/eprint/2530/1/Tea%20Landscapes%20of%20Asia-F-WEB%20%281%29.pdf

29

Ebi K.L., and J.J. Hess 2020, Health risks due to climate change: inequity in causes and consequences: study examines health risks due to climate change. Health Affairs 39:2056-2062. doi:10.1377/hlthaff.2020.01125

10.1377/hlthaff.2020.0112533284705
30

Ebi K.L., J. Vanos, J.W. Baldwin, J.E. Bell, D.M. Hondula, N.A. Errett, K. Hayes, C.E. Reid, S. Saha, J. Spector, and P. Berry 2021, Extreme Weather and Climate Change: Population Health and Health System Implications. Annu Rev Public Health 42:293-315. doi:10.1146/annurev-publhealth-012420-105026

10.1146/annurev-publhealth-012420-10502633406378PMC9013542
31

Ekanayake P.B. 2003, Crop diversification and intercropping in tea lands. Trop Agric Res Ext 6:66-70.

10.4038/tare.v6i0.5442
32

Etukudoh E.A., V.I. Ilojianya, O.B. Ayorinde, C.D. Daudu, A. Adefemi, and A. Hamdan 2024, Review of climate change impact on water availability in the USA and Africa. Int J Sci Res Arch 11:942-951. doi:10.30574/ijsra.2024.11.1.0169

10.30574/ijsra.2024.11.1.0169
33

Fang Z.T., W.T. Yang, C.Y. Li, D. Li, J.J. Dong, D. Zhao, H.R. Xu, J.H. Ye, X.Q. Zheng, Y.R. Liang, and J.L. Lu 2021, Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. J Food Compos Anal 97:103772. doi:10.1016/j.jfca.2020.103772

10.1016/j.jfca.2020.103772
34

FAOSTAT 2024, Available at: https://www.fao.org/faostat/en/#home

35

Gunasekare M.T.K. 2012, Tea Plant (Camellia sinensis) Breeding in Sri Lanka, in: Global Tea Breeding. Springer, Berlin, Heidelberg, pp 125-176. doi:10.1007/978-3-642-31878-8_4

10.1007/978-3-642-31878-8_4
36

Gunathilaka R.P.D., J.C.R. Smart, and C.M. Fleming 2017, The impact of changing climate on perennial crops: the case of tea production in Sri Lanka. Clim Change 140:577-592. doi:10.1007/s10584-016-1882-z

10.1007/s10584-016-1882-z
37

Gupta S., R. Bharalee, P. Bhorali, T. Bandyopadhyay, B. Gohain, N. Agarwal, P. Ahmed, H. Saikia, S. Borchetia, M.C. Kalita, A.K. Handique, and S. Das 2012, Identification of drought tolerant progenies in tea by gene expression analysis. Funct Integr Genomics 12:543-563. doi:10.1007/s10142-012-0277-0

10.1007/s10142-012-0277-022562548
38

Habib-ur-Rahman M., A. Ahmad, A. Raza, M.U. Hasnain, H.F. Alharby, Y.M. Alzahrani, A.A. Bamagoos, K.R. Hakeem, S. Ahmad, W. Nasim, S. Ali, F. Mansour, and A. El Sabagh 2022, Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front Plant Sci 13:925548. doi:10.3389/fpls.2022.925548

10.3389/fpls.2022.92554836325567PMC9621323
39

Hajiboland R. 2018, Nutrient deficiency and abundance in tea plants: metabolism to productivity. Springer, Singapore pp 173-215. doi:10.1007/978-981-13-2140-5_9

10.1007/978-981-13-2140-5_9
40

Hajra N.G. 2019, Tea Research in India: Achievements and Current Priorities. J Tea Sci Res doi:10.5376/jtsr.2019.09.0002

10.5376/jtsr.2019.09.0002
41

Han W., S. Ahmed, C. Wei, C.M. Orians, and M. Landi 2020, Responses of tea plants to climate change: from molecules to ecosystems. Front Plant Sci 11:594317. doi:10.3389/fpls.2020.594317

10.3389/fpls.2020.59431733329660PMC7732546
42

Han W.Y., J.G. Huang, X. Li, Z.X. Li, G.J. Ahammed, P. Yan, and J.R. Stepp 2017, Altitudinal effects on the quality of green tea in east China: a climate change perspective. Eur Food Res Technol 243:323-330. doi:10.1007/s00217-016-2746-5

10.1007/s00217-016-2746-5
43

Hao X., L. Wang, J. Zeng, Y. Yang, and X. Wang 2018, Response and adaptation mechanisms of tea plant to low-temperature stress. Springer, Singapore pp 39-61. doi:10.1007/978-981-13-2140-5_3

10.1007/978-981-13-2140-5_3
44

Hasan R., A.F.M.S. Islam, M.A. Maleque, M.S. Islam, and M.M. Rahman 2023, Effect of drought stress on leaf productivity and liquor quality of tea: A Review. Asian J Soil Sci Plant Nutr 9:1-10. doi:10.9734/ajsspn/2023/v9i4187

10.9734/ajsspn/2023/v9i4187
45

Hassan O., S. Kim, K.M. Kim, and T. Chang 2023, First report of leaf anthracnose caused by Colletotrichum camelliae on Tea plants (Camellia sinensis) in South Korea. Plant Dis 107:2881. doi:10.1094/PDIS-11-22-2622-PDN

10.1094/PDIS-11-22-2622-PDN37018215
46

He H.F., K. Wei, J. Yin, and Y. Ye 2021, Insight into tea flavonoids: composition and chemistry. Food Rev Int 37:812-823. doi:10.1080/87559129.2020.1721530

10.1080/87559129.2020.1721530
47

He X., L. Xu, C. Pan, C. Gong, Y. Wang, X. Liu, and Y. Yu 2020, Drought resistance of Camellia oleifera under drought stress: Changes in physiology and growth characteristics. PLOS ONE 15:e0235795. doi:10.1371/journal.pone.0235795

10.1371/journal.pone.023579532645115PMC7347177
48

Huang W., M. Lin, J. Liao, A. Li, W. Tsewang, X. Chen, B. Sun, S. Liu, and P. Zheng 2022, Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil: A critical review. Horticulturae 8:660. doi:10.3390/horticulturae8070660

10.3390/horticulturae8070660
49

Hwang J.G., and Y.D. Kim 2012, A survey low temperature damage of tea tree at South Korea in 2011. Korea J Agri For Meteorol 14:246-253. doi:10.5532/KJAFM.2012.14.4.246

10.5532/KJAFM.2012.14.4.246
50

İzmirli Ş.G., and S. Gül 2023, Modeling of current and future distributions of Camellia sinensis in Türkiye under climate change. Theor Appl Climatol 154:1323-1332. doi:10.1007/s00704-023-04627-6

10.1007/s00704-023-04627-6
51

Jagadeesh M. S, H. T. Vinay, V. Pavithra, and G. J. Abhishek 2024, India's tea export potential: Stirring up global trade opportunities. J Exp Agric Int 46:309-319. doi:10.9734/jeai/2024/v46i92827

10.9734/jeai/2024/v46i92827
52

Jayasinghe S.L., and L. Kumar 2019, Modeling the climate suitability of tea [Camellia sinensis(L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric For Meteorol 272:102-117. doi:10.1016/j.agrformet.2019.03.025

10.1016/j.agrformet.2019.03.025
53

Jayasinghe S.L., and L. Kumar 2023, Causes of tea land dynamics in Sri Lanka between 1995 and 2030. Reg Environ Change 23:127. doi:10.1007/s10113-023-02123-1

10.1007/s10113-023-02123-1
54

Jayasinghe S.L., and L.Kumar 2021, Potential impact of the current and future climate on the yield, quality, and climate suitability for Tea [Camellia sinensis (L.) O. Kuntze]: A systematic review. Agronomy 11:619. doi:10.3390/agronomy 11040619

10.3390/agronomy
55

Jayasinghe S.L., and L. Kumar 2020, Climate change may imperil tea production in the four major tea producers according to climate prediction models. Agronomy 10:1536. doi:10.3390/agronomy10101536

10.3390/agronomy10101536
56

Jayasinghe S.L., L. Kumar, and E. Kaliyadasa 2021, The future of high-quality Ceylon tea seems bleak in the face of climate change. Int J Biometeorol 65:1629-1646. doi:10.1007/s00484-021-02118-9

10.1007/s00484-021-02118-933782787
57

Jayathilaka P.M.S., P. Soni, S.R. Perret, H.P.W. Jayasuriya, and V.M. Salokhe 2012, Spatial assessment of climate change effects on crop suitability for major plantation crops in Sri Lanka. Reg Environ Change 12:55-68. doi:10.1007/s10113-011-0235-8

10.1007/s10113-011-0235-8
58

Jeong B.C., and Y.G. Park 2012, Tea plant (Camellia sinensis) breeding in Korea, in: Global tea breeding. Springer, Berlin, Heidelberg pp 263-288. doi:10.1007/978-3-642-31878-8_8

10.1007/978-3-642-31878-8_8
59

Jeyaramraja P., P. Pius, R. Raj Kumar, and D. Jayakumar 2003, Soil moisture stress‐induced alterations in bioconstituents determining tea quality. J Sci Food Agric 83:1187-1191. doi:10.1002/jsfa.1440

10.1002/jsfa.1440
60

Kaiho K. 2023, An animal crisis caused by pollution, deforestation, and warming in the late 21st century and exacerbation by nuclear war. Heliyon 9:e15221. doi:10.1016/j.heliyon.2023.e15221

10.1016/j.heliyon.2023.e1522137095985PMC10122020
61

Chang K. 2015, World tea production and trade current and future development. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/c0ccb19d-1e9b-46e7-a3c3-b1917d1a7faf/content

62

Kariuki G.M., J. Njaramba, and C. Ombuki 2022, Tea production response to climate change in Kenya: An autoregressive distributed lag approach. Afr J Econ Rev 10:2-26. Available at: https://www.proquest.com/scholarly-journals/tea-production -response-climate-change-kenya/docview/3071714157/se-2

63

Kawai A. 1997, Prospect for integrated pest management in tea cultivation in Japan. Jpn Agric Res Q 31:213-218.

64

Kim K.R., S.H. Choi, P.I. Yi, J.G. Hwang, and S.H. Kang 2023, Predicting the Camellia Sinensis Growth Distribution Under Climate Change Scenarios. J Kor Tea Soc 30:40-48.

10.29225/jkts.2024.30.1.40
65

Komariah Pitaloka D.D.A., I. Batubara, W. Nurcholis, A. Sandrawati, A. Setyawati, J. Syamsiyah, and W.S. Dewi 2021, The effects of soil temperature from soil mulching and harvest age on phenol, flavonoid and antioxidant contents of Java tea (Orthosiphon aristatus B.). Chem Biol Technol Agric 8:56. doi:10.1186/s40538-021-00256-1

10.1186/s40538-021-00256-1
67

Kotikot S.M., A. Flores, R.E. Griffin, J. Nyaga, J.L. Case, R. Mugo, A. Sedah, E. Adams, A. Limaye, and D.E. Irwin 2020, Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands. Int J Appl Earth Obs Geoinformation 84:101971. doi:10.1016/j.jag.2019.101971

10.1016/j.jag.2019.101971
68

Kumar K.R., K. Dashora, N. Krishnan, S. Sanyal, H. Chandra, S. Dharmaraja, and V. Kumari 2021, Feasibility assessment of renewable energy resources for tea plantation and industry in India - A review. Renew Sustain Energy Rev 145:111083. doi:10.1016/j.rser.2021.111083

10.1016/j.rser.2021.111083
69

Kumhar K.C., A. Babu, J.P. Arulmarianathan, B. Deka, M. Bordoloi, H. Rajbongshi, and P. Dey 2020, Role of beneficial fungi in managing diseases and insect pests of tea plantation. J Biol Pest Control 30:78. doi:10.1186/s41938-020-00270-9

10.1186/s41938-020-00270-9
70

Larson C. 2015, Reading the tea leaves for effects of climate change. Science 348:953-954. doi:10.1126/science.348.6238.953

10.1126/science.348.6238.95326023112
71

Lee J.E. 2015, Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chem pp 452-459. doi:10.1016/j.foodchem.2014.11.086

10.1016/j.foodchem.2014.11.08625529705
72

Li L., M. Wang, S.S. Pokharel, C. Li, M.N. Parajulee, F. Chen, and W. Fang 2019, Effects of elevated CO2 on foliar soluble nutrients and functional components of tea, and population dynamics of tea aphid, Toxoptera aurantii. Plant Physiol Biochem 145:84-94. doi:10.1016/j.plaphy.2019.10.023

10.1016/j.plaphy.2019.10.02331675526
73

Li X., G.J. Ahammed, L. Zhang, P. Yan, L. Zhang, and W.Y. Han 2018, Elevated carbon dioxide-induced perturbations in metabolism of Tea plants. Springer, Singapore pp 135-155. doi:10.1007/978-981-13-2140-5_7

10.1007/978-981-13-2140-5_7
74

Li X., L. Zhang, G.J. Ahammed, Z.X. Li, J.P. Wei, C. Shen, P. Yan, L.P. Zhang, and W.Y. Han 2017, Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Sci Rep 7:7937. doi:10.1038/s41598-017-08465-1

10.1038/s41598-017-08465-128801632PMC5554289
75

Li X., L.C. Stringer, and M. Dallimer 2022, The impacts of urbanisation and climate change on the urban thermal environment in Africa. Climate 10:164. doi:10.3390/cli10110164

10.3390/cli10110164
76

Li Y., Q. Zhang, L. Ou, D. Ji, T. Liu, R. Lan, X. Li, and L. Jin 2020, Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide. Agronomy 10:915. doi:10.3390/agronomy10060915

10.3390/agronomy10060915
77

Liao Y., X. Zhou, and L. Zeng 2022, How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 62:3751-3767. doi:10.1080/10408398.2020.1868970

10.1080/10408398.2020.186897033401945
78

Liaqat W., C. Barutçular, M.U. Farooq, H. Ahmad, M.F. Jan, Z. Ahmad, H. Nawaz, and M. Li 2022, Climate change in relation to agriculture: A review. Span J Agric Res 20:e03R01. doi:10.5424/sjar/2022202-17742

10.5424/sjar/2022202-17742
79

Lou W., K. Sun, Y. Zhao, S. Deng, and Z. Zhou 2021, Impact of climate change on inter‐annual variation in tea plant output in Zhejiang, China. Int J Climatol pp 41. doi:10.1002/joc.6700

10.1002/joc.6700
80

Lou W., Z. Ji, K. Sun, and J. Zhou 2013, Application of remote sensing and GIS for assessing economic loss caused by frost damage to tea plantations. Precis Agric 14:606-620. doi:10.1007/s11119-013-9318-5

10.1007/s11119-013-9318-5
81

Lu Y., Y. Hu, R.L. Snyder, and E.R. Kent 2019, Tea leaf's microstructure and ultrastructure response to low temperature in indicating critical damage temperature. Inf Process Agric 6:247-254. doi:10.1016/j.inpa.2018.09.004

10.1016/j.inpa.2018.09.004
82

Majumder Basu A., B. Bera, and A. Rajan 2010, Tea statistics: global scenario. Inc J Tea Sci 8:121-124.

83

Maleque Md.A., J. Ferdous, A.A. Shitel, J. Ahmed, A.F.M.S. Islam, M.F. Mondal, K. Hassan, M.A.R. Choudhury, and H.R. Ishii 2024, Role of shade trees in conserving beneficial arthropods of biocontrol importance in tea ecosystem. Agrofor Syst 98:21-36. doi:10.1007/s10457-023-00886-4

10.1007/s10457-023-00886-4
84

Malhi G.S., M. Kaur, and P.Kaushik 2021, Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13:1318. doi:10.3390/su13031318

10.3390/su13031318
85

Mallik P., and T. Ghosh 2022, Impact of climate on tea production: a study of the Dooars region in India. Theor Appl Climatol 147:559-573. doi:10.1007/s00704-021-03848-x

10.1007/s00704-021-03848-x
86

Mallik P., and T. Ghosh 2023, Sub-regional variation in atmospheric and land variables regulates tea yield in the Dooars region of West Bengal, India. Int J Biometeorol 67:1591-1605. doi:10.1007/s00484-023-02521-4

10.1007/s00484-023-02521-437479848
87

Mamun M.S.A., and M. Ahmed 2011, Integrated pest management in tea: prospects and future strategies in Bangladesh. J Plant Prot Res 3:1-13.

88

Maritim T.K., S.M. Kamunya, P. Mireji, C. Mwendia, R.C. Muoki, E.K. Cheruiyot, and F.N. Wachira 2015, Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. J Hortic Sci Biotechnol 90:395-400. doi:10.1080/14620316.2015.11513200

10.1080/14620316.2015.11513200
89

Masson-Delmotte V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, and M. Huang 2021, Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change 2:2391. doi:10.1017/9781009157896

10.1017/9781009157896
90

Masson-Delmotte V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, and S. Connors 2019, Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming 1:93-174.

91

Mohotti A.J., and D.W.Lawlor 2002, Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. J Exp Bot 53:313-322. doi:10.1093/jexbot/53.367.313

10.1093/jexbot/53.367.31311807135
92

Mudau F.N., P. Soundy, and E.S. Du Toit 2007, Effects of nitrogen, phosphorus, and potassium nutrition on total polyphenol content of bush tea (Athrixia phylicoides L.) leaves in shaded nursery environment. HortScience 42:334-338. doi:10.21273/HORTSCI.42.2.334

10.21273/HORTSCI.42.2.334
93

Mudau N.F., P. Soundy, and E.S. Du Toit 2005, Plant growth and development of bush tea as affected by nitrogen, phosphorus, and potassium nutrition. HortScience 40:1898-1901. doi:10.21273/HORTSCI.40.6.1898

10.21273/HORTSCI.40.6.1898
94

Muench S., M. Bavorova, and P. Pradhan 2021, Climate change adaptation by smallholder tea farmers: a case study of nepal. Environ Sci Policy 116:136-146. doi:10.1016/j.envsci.2020.10.012

10.1016/j.envsci.2020.10.012
95

Mujahid Hilal M.I. 2019, Sri Lanka's tea economy: issues and strategies. J Polit Law 13:1. doi:10.5539/jpl.v13n1p1

10.5539/jpl.v13n1p1
96

Mukhopadhyay A., S. Das, and K. Basnet 2018, Pests of Indian Tea Plantations, in: Omkar (Ed.), Pests and Their Management. Springer, Singapore pp 649-695. doi:10.1007/978-981-10-8687-8_20

10.1007/978-981-10-8687-8_20
97

Mukhopadhyay M., and T.K. Mondal 2017, Cultivation, Improvement, and Environmental Impacts of Tea. Oxford University Press. doi:10.1093/acrefore/9780199389414.013.373

10.1093/acrefore/9780199389414.013.373
98

Munasinghe M., Y. Deraniyagala, N. Dassanayake, and H. Karunarathna 2017, Economic, social and environmental impacts and overall sustainability of the tea sector in Sri Lanka. Sustain Prod Consum 12:155-169. doi:10.1016/j.spc.2017.07.003

10.1016/j.spc.2017.07.003
99

Muoki C.R., T.K. Maritim, W.A. Oluoch, S.M. Kamunya, and J.K. Bore 2020, Combating Climate Change in the Kenyan Tea Industry. Front Plant Sci 11:339. doi:10.3389/fpls.2020.00339

10.3389/fpls.2020.0033932269583PMC7109314
100

Nasrullah Ali, S., M. Umar, L. Sun, M. Naeem, H. Yasmin, and N., Khan 2022, Flooding tolerance in plants: from physiological and molecular perspectives. Braz J Bot 45:1161-1176. doi:10.1007/s40415-022-00841-0

10.1007/s40415-022-00841-0
101

Nelum K.G., P. Piyasena, M.G.S. Liyanage, N.C. Weerakoon, and M.S.D.L. De Silva 2023, Allelopathic potential of green manure, cover crops, mulching plants, and weeds found in tea plantations. Afr J Agric Res 19:962-968. doi:10.5897/AJAR2023.16483

10.5897/AJAR2023.16483
102

Ng'etich W.K., W. Stephens, and C.O. Othieno 2001, Responses of tea to environment in kenya. 3. yield and yield distribution. Exp Agric 37:361-372. doi:10.1017/S0014479701003076

10.1017/S0014479701003076
103

Niles M.T., and N.D.Mueller 2016, Farmer perceptions of climate change: Associations with observed temperature and precipitation trends, irrigation, and climate beliefs. Glob Environ Change 39:133-142. doi:10.1016/j.gloenvcha.2016.05.002

10.1016/j.gloenvcha.2016.05.002
104

Oh S., and S.C. Koh 2014, Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field. Hortic Environ Biotechnol 55:363-371. doi:10.1007/s13580-014-0055-0

10.1007/s13580-014-0055-0
105

Otieno W. 2002, Armillaria root rot of tea in Kenya: Characterization of the Pathogen and approaches to disease management. Wageningen University and Research. Available at: https://www.proquest.com/openview/d01ab5194bfb957 733189d049e40d6f4/1?cbl=2026366&diss=y&pq-origsite=gscholar&parentSessionId=gdqvx7azKP8IUAfc%2BXB4zsYlzfybJYBoGIypNlhVQ3s%3D

106

Pan S.Y., Q. Nie, H.C. Tai, X.L. Song, Y.F. Tong, L.J.F. Zhang, X.W. Wu, Z.H. Lin, Y.Y. Zhang, D.Y. Ye, Y. Zhang, X.Y. Wang, P.L. Zhu, Z.S. Chu, Z.L. Yu, and C. Liang 2022, Tea and tea drinking: China's outstanding contributions to the mankind. Chin Med 17:27. doi:10.1186/s13020-022-00571-1

10.1186/s13020-022-00571-135193642PMC8861626
107

Pandey A.K., G.D. Sinniah, A. Babu, and A. Tanti 2021, How the global tea industry copes with fungal diseases - challenges and opportunities. Plant Dis 105:1868-1879. doi:10.1094/PDIS-09-20-1945-FE

10.1094/PDIS-09-20-1945-FE33734810
108

Pang J., H. Li, F.Yu, J. Geng, and W. Zhang 2022, Environmental controls on water use efficiency in a hilly tea plantation in southeast China. Agric Water Manag 269:107678. doi:10.1016/j.agwat.2022.107678

10.1016/j.agwat.2022.107678
109

Parida B.R., T. Mahato, and S. Ghosh 2024, Monitoring tea plantations during 1990-2022 using multi-temporal satellite data in Assam (India). Trop Ecol 65:387-398. doi:10.1007/s42965-023-00304-x

10.1007/s42965-023-00304-x37362781PMC10206575
110

Pathak S.K. 2004, Population dynamics and feeding impact of some sucking pests on Darjeeling tea (Thesis). Available at: https://ir.nbu.ac.in/server/api/core/bitstreams/e08d8dc6-77be-4f36-81d3-d0ba90740a56/content

111

Peterson J., J. Dwyer, P. Jacques, W. Rand, R. Prior, and K. Chui 2004, Tea variety and brewing techniques influence flavonoid content of black tea. J Food Compos Anal 17:397-405. doi:10.1016/j.jfca.2004.03.022

10.1016/j.jfca.2004.03.022
112

Pokharel S.S., H. Yu, W. Fang, M.N. Parajulee, and F. Chen 2023, Intercropping cover crops for a vital ecosystem service: a review of the biocontrol of insect pests in tea agroecosystems. Plants 12:2361. doi:10.3390/plants12122361

10.3390/plants1212236137375986PMC10304037
113

Punyasiri P.A.N., I.S.B. Abeysinghe, V. Kumar, D. Treutter, D. Duy, C. Gosch, S. Martens, G. Forkmann, and T.C. Fischer 2004, Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22-30. doi:10.1016/j.abb.2004.08.003

10.1016/j.abb.2004.08.00315464723
114

Qian W., J. Hu, X. Zhang, L. Zhao, Y. Wang, and Z. Ding 2018, Response of tea plants to drought stress, in: han, w.-y., li, x., ahammed, g.j. (eds.), stress physiology of tea in the face of climate change. Springer, Singapore pp 63-81. doi:10.1007/978-981-13-2140-5_4

10.1007/978-981-13-2140-5_4PMC6013902
115

Raihan A. 2023, A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. J Environ Sci Econ 2:36-58. doi:10.56556/jescae.v2i3.587

10.56556/jescae.v2i3.587
116

Rajan P., P. Natraj, M. Kim, M. Lee, Y.J. Jang, Y.J. Lee, and S.C. Kim 2024, Climate change impacts on and response strategies for kiwifruit production: A comprehensive review. Plants 13:2354. doi:10.3390/plants13172354

10.3390/plants1317235439273838PMC11396826
117

Raman A. 2021, 'Discovery'of the tea plant Thea assamica (now, Camellia sinensis var. assamica) in the Indian territory in the 1830s. Indian J Nat Prod Resour 12:11-25. doi:10.56042/ijnpr.v12i1.30184

10.56042/ijnpr.v12i1.30184
118

Rawat A., D. Kumar, and B.S. Khati 2024, A review on climate change impacts, models, and its consequences on different sectors: a systematic approach. J Water Clim Change 15:104-126. doi:10.2166/wcc.2023.536

10.2166/wcc.2023.536
119

Rigden A.J., V. Ongoma, and P. Huybers 2020, Kenyan tea is made with heat and water: how will climate change influence its yield? Environ. Res Lett 15:044003. doi:10.1088/1748-9326/ab70be

10.1088/1748-9326/ab70be
120

Rokhmah D.N., D. Astutik, and H. Supriadi 2022, Cultivation technology for drought stress mitigation in tea plants: A review. IOP Conf Ser Earth Environ Sci 1038:012015. doi:10.1088/1755-1315/1038/1/012015

10.1088/1755-1315/1038/1/012015
121

Roy S., A.K. Barooah, K.Z. Ahmed, R.D. Baruah, A.K. Prasad, and A. Mukhopadhyay 2020, Impact of climate change on tea pest status in northeast India and effective plans for mitigation. Acta Ecol Sin 40:432-442. doi:10.1016/j.chnaes.2019.08.003

10.1016/j.chnaes.2019.08.003
122

Roy S., N. Muraleedharan, A. Mukhapadhyay, and G. Handique 2015, The tea mosquito bug, Helopeltis theivora Waterhouse (Heteroptera: Miridae): its status, biology, ecology and management in tea plantations. Int J Pest Manag 61:179-197. doi:10.1080/09670874.2015.1030002

10.1080/09670874.2015.1030002
123

Rummukainen M. 2012, Changes in climate and weather extremes in the 21st century. WIREs Clim Change 3:115-129. doi:10.1002/wcc.160

10.1002/wcc.160
124

Ruv Lemes M., G. Sampaio, L. Garcia-Carreras, G. Fisch, L.M. Alves, R. Bassett, R. Betts, J. Maksic, M.H. Shimizu, R.R. Torres, M. Guatura, L.S. Basso, and P.D.C. Bispo 2023, Impacts on South America moisture transport under Amazon deforestation and 2°C global warming. Sci Total Environ 905:167407. doi:10.1016/j.scitotenv.2023.167407

10.1016/j.scitotenv.2023.16740737777132
125

Rwigema P.C. 2021, Combating climate change impacts in tea and coffee farming in East Africa: Theoretical perspective. Strateg J Bus Change Manag pp 8. doi:10.61426/sjbcm.v8i2.2013

10.61426/sjbcm.v8i2.2013
126

Safaei Chaeikar S., S. Roofigari Haghighat, S. Marzvan, and R. Azadi 2020, Responses of some Iranian tea clones [Camellia sinensis (L.) O. Kuntze] to drought stress. Crop Breed J doi:10.22092/cbj.2020.351375.1057

127

Samarina L.S., L.S. Malyukova, A.M. Efremov, T.A. Simonyan, A.O. Matskiv, N.G. Koninskaya, R.S. Rakhmangulov, M.V. Gvasaliya, V.I. Malyarovskaya, A.V. Ryndin, Y.L. Orlov, W. Tong, and M.V. Hanke 2020, Physiological, biochemical and genetic responses of Caucasian tea (Camellia sinensis (L.) Kuntze) genotypes under cold and frost stress. PeerJ 8:e9787. doi:10.7717/peerj.9787

10.7717/peerj.978732923182PMC7457925
128

Samynathan R., K. Shanmugam, C. Nagarajan, H. Murugasamy, R.V.J. Ilango, A. Shanmugam, B. Venkidasamy, and M. Thiruvengadam 2021, The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L.) O. Kuntze). Plant Gene 27:100316. doi:10.1016/j.plgene.2021.100316

10.1016/j.plgene.2021.100316
129

Sarkar S., and S.E. Kabir 2016, A field survey of sucking tea pests and their control measures in a few tea gardens of terai region, West Bengal, India, 2016. Int J Sci Res IJSR 5:1343-1345. doi:10.21275/v5i3.NOV162125

10.21275/v5i3.NOV162125
130

Sarma D. 2022, Economics of climate change and its impact on the tea industry in Assam. Available at: http://dispurcollege.digitallibrary.co.in/bitstream/123456789/216/1/Dr.%20Manalisha%20Bhattachryya.pdf#page=106

131

Sen S., M. Rai, D. Das, S. Chandra, and K. Acharya 2020, Blister blight a threatened problem in tea industry: A review. J King Saud Univ Sci 32:3265-3272. doi:10.1016/j.jksus.2020.09.008

10.1016/j.jksus.2020.09.008
132

Seneviratne S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A.D. Luca, S. Ghosh, I. Iskandar, J. Kossin, S. Lewis, and F. Otto 2021, Weather and climate extreme events in a changing climate. Cambridge University Press pp 1513-1766. doi:10.1017/9781009157896.013

10.1017/9781009157896.013
133

Shao C., C. Zhang, Z. Lv, and C. Shen 2021, Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Sci Hortic 281:109984. doi:10.1016/j.scienta.2021.109984

10.1016/j.scienta.2021.109984
134

Shen J., D. Zhang, L. Zhou, X. Zhang, J. Liao, Y. Duan, B. Wen, Y. Ma, Y. Wang, W. Fang, and X. Zhu 2019, Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiol 39:1583-1599. doi:10.1093/treephys/tpz059

10.1093/treephys/tpz05931135909
135

Shen J., S. Wang, L. Sun, Y. Wang, K. Fan, C. Li, H. Wang, C. Bi, F. Zhang, and Z. Ding 2022, Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering. Front Plant Sci 13:978531. doi:10.3389/fpls.2022.978531

10.3389/fpls.2022.97853136119581PMC9478477
136

Song W.O., and O.K.Chun 2008, Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J Nutr 138:1543S-1547S. doi:10.1093/jn/138.8.1543S

10.1093/jn/138.8.1543S18641204
137

Sujith R., and W. Hasula 2017, The climate change magazine of Sri Lanka. Available at: https://www.climatechange.lk/Publications_2016/NeelaHarithaMagazine_2017.pdf

138

Sun L.T., Y. Wang, and Z. Ding 2011, Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth. The Journal of Applied Ecology 22:2291-2296.

139

Sun Y., X. Zhang, F.W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren 2014, Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change 4:1082-1085. doi:10.1038/nclimate2410

10.1038/nclimate2410
140

Tamang, M.B., 2008, Small-growers tea plantations in uttarakhand. Int J Tea Sci 7:25-30.

141

Tan X., H. Li, Z. Zhang, Y. Yang, Z. Jin, W. Chen, D. Tang, C. Wei, and Q. Tang 2023, Characterization of the difference between day and night temperatures on the growth, photosynthesis, and metabolite accumulation of tea seedlings. Int J Mol Sci 24:6718. doi:10.3390/ijms24076718

10.3390/ijms2407671837047691PMC10095163
142

Tompong S., and K. Kunasakdakul 2014, Causal agent, symptoms and environmental factors of root rot disease of organic Assam tea in Mae Taeng district, Chiang Mai province. J Adv Agric Technol 10:767-777. Available at: http://www.ijat-aatsea.com

143

Trout K., G. Muttitt, D. Lafleur, T. Van De Graaf, R. Mendelevitch, L. Mei, and M. Meinshausen 2022, Existing fossil fuel extraction would warm the world beyond 1.5°C. Environ Res Lett 17:064010. doi:10.1088/1748-9326/ac6228

10.1088/1748-9326/ac6228
144

Vargas Zeppetello L.R., L.A. Parsons, J.T. Spector, R.L. Naylor, D.S. Battisti, Y.J. Masuda, and N.H. Wolff 2020, Large scale tropical deforestation drives extreme warming. Environ Res Lett 15:084012. doi:10.1088/1748-9326/ab96d2

10.1088/1748-9326/ab96d2
145

Venkatappa M., N. Sasaki, P. Han, and I. Abe 2021, Impacts of droughts and floods on croplands and crop production in Southeast Asia - An application of Google Earth Engine. Sci Total Environ 795:148829. doi:10.1016/j.scitotenv.2021.148829

10.1016/j.scitotenv.2021.14882934252779
146

Waheed A., F.S. Hamid, A.H. Shah, H. Ahmad, A. Khalid, F.M. Abbasi, N. Ahmad, S. Aslam, and S. Sarwar 2012, Response of different tea (Camellia sinensis L.) clones against drought stress. J Mater Environ Sci 3:395-410. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6bc7a358dde4c23a21ddba48e881dad31bbb7f24

147

Wang H., G.J. Provan, and K. Helliwell 2000, Tea flavonoids: their functions, utilisation and analysis. Trends in Food Science & Technology 11:152-160. doi:10.1016/S0924-2244(00)00061-3

10.1016/S0924-2244(00)00061-3
148

Wang P., X. Li, J. Tang, J. Yang, Y. Ma, D. Wu, and Z. Huo 2023, Determining the critical threshold of meteorological heat damage to tea plants based on MODIS LST products for tea planting areas in China. Ecol Inform 77:102235. doi:10.1016/j.ecoinf.2023.102235

10.1016/j.ecoinf.2023.102235
149

Wang P., Y. Ma, J. Tang, D. Wu, H. Chen, Z. Jin, and Z. Huo 2021, Spring frost damage to tea plants can be identified with daily minimum air temperatures estimated by MODIS land surface temperature products. Remote Sens 13:1177. doi:10.3390/rs13061177

10.3390/rs13061177
150

Wang S.Q., Z.C. Zheng, and T.X. Li 2013, Effects of ages of tea plantations on changes of nitrogen, phosphorus and potassium contents in soil aggregates. Journal of Plant Nutrition and Fertilizers 19:1393-1402. doi:10.11674/zwyf.2013.0613

151

Wasko C., R. Nathan, L. Stein, and D. O'Shea 2021, Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J Hydrol 603:126994. doi:10.1016/j.jhydrol.2021.126994

10.1016/j.jhydrol.2021.126994
152

Wei Q., H.Y. Yu, C.D. Niu, R. Yao, S.F. Wu, Z. Chen, and C.F. Gao 2015, Comparison of insecticide susceptibilities of Empoasca vitis (Hemiptera: Cicadellidae) from three main tea-growing regions in China. J Econ Entomol 108:1251-1259. doi:10.1093/jee/tov063

10.1093/jee/tov06326470253
153

Wen B., X. Zhang, S. Ren, Y. Duan, Y. Zhang, X. Zhu, Y. Wang, Y. Ma, and W. Fang 2020, Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns. Agrofor Syst 94:963-974. doi:10.1007/s10457-019-00463-8

10.1007/s10457-019-00463-8
154

Wijeratne M.A. 1996, Vulnerability of Sri Lanka tea production to global climate change. Water, Air, and Soil Pollution 92:87-94. doi:10.1007/BF00175555

10.1007/BF00175555
155

Wu Q., C. Sun, and J. Yang 2020, Economic analysis of the change of tea production layout in China. J Phys Conf Ser 1629:012048. doi:10.1088/1742-6596/1629/1/012048

10.1088/1742-6596/1629/1/012048
156

Xia W., C. Li, J. Nie, S. Shao, K.M. Rogers, Y. Zhang, Z. Li, and Y. Yuan 2022, Stable isotope and photosynthetic response of tea grown under different temperature and light conditions. Food Chem 368:130771. doi:10.1016/j.foodchem.2021.130771

10.1016/j.foodchem.2021.13077134438181
157

Xianchen Z., J. Huiguang, W. Xiaochun, and L. Yeyun 2020, The effects of different types of mulch on soil properties and tea production and quality. J Sci Food Agric 100:5292-5300. doi:10.1002/jsfa.10580

10.1002/jsfa.1058032542650
158

Xiao Z., X. Huang, Z. Zang, and H. Yang 2018, Spatio-temporal variation and the driving forces of tea production in China over the last 30 years. J Geogr Sci 28:275-290. doi:10.1007/s11442-018-1472-2

10.1007/s11442-018-1472-2
159

Yamashita H., Y. Tanaka, K. Umetsu, S. Morita, Y. Ono, T. Suzuki, T. Takemoto, A. Morita, and T. Ikka 2020, Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation. Front Plant Sci 11:556476. doi:10.3389/fpls.2020.556476

10.3389/fpls.2020.55647633240292PMC7677308
160

Yan Y., S. Jeong, C.E. Park, N.D. Mueller, S. Piao, H. Park, J. Joo, X. Chen, X. Wang, J. Liu, and C. Zheng 2021, Effects of extreme temperature on China's tea production. Environ Res Lett 16:044040. doi:10.1088/1748-9326/abede6

10.1088/1748-9326/abede6
161

Ye G.Y., Q. Xiao, M. Chen, X. Chen, Z. Yuan, D.W. Stanley, and C. Hu 2014, Tea: Biological control of insect and mite pests in China. Biol Control 68:73-91. doi:10.1016/j.biocontrol.2013.06.013

10.1016/j.biocontrol.2013.06.013
162

Yoro K.O., and M.O. Daramola 2020, CO2 emission sources, greenhouse gases, and the global warming effect, in: Advances in Carbon Capture. Elsevier pp 3-28. doi:10.1016/B978-0-12-819657-1.00001-3

10.1016/B978-0-12-819657-1.00001-3
163

You Q., Z. Jiang, X. Yue, W. Guo, Y. Liu, J. Cao, W. Li, F. Wu, Z. Cai, H. Zhu, T. Li, Z. Liu, J. He, D. Chen, N. Pepin, and P. Zhai 2022, Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C. Npj Clim Atmospheric Sci 5:80. doi:10.1038/s41612-022-00303-0

10.1038/s41612-022-00303-0
164

Zhao Y., Y. Xu, L. Zhang, M. Zhao, and C. Wang 2022, Adapting tea production to climate change under rapid economic development in china from 1987 to 2017. Agronomy 12:3192. doi:10.3390/agronomy12123192

10.3390/agronomy12123192
165

Zhou C., C. Zhu, H. Fu, X. Li, L. Chen, Y. Lin, Z. Lai, and Y. Guo 2019, Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLOS ONE 14:e0223609. doi:10.1371/journal.pone.0223609

10.1371/journal.pone.022360931600284PMC6786557
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 33
  • No :4
  • Pages :453-471
  • Received Date : 2024-10-23
  • Accepted Date : 2024-10-28