All Issue

2022 Vol.31, Issue 3 Preview Page

Original Articles

31 July 2022. pp. 152-162
Abstract
References
1
Ahn W.Y., and H.C. Lee 2016, Automatic control system for cultivation environment of crops. J Korea Inst Inf Commun Eng 20:2167-2171. (in Korean) doi:10.6109/jkiice.2016.20.11.2167 10.6109/jkiice.2016.20.11.2167
2
Ariga M., S. Nakayama, and D. Nishibayasi 2018, Machine learning at work. O'Reilly Media, CA, USA, pp 137-140.
3
Chang Z., Y. Zhang, and W. Chen, 2019, Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 187:115804. doi:10.1016/j.energy.2019.07.134 10.1016/j.energy.2019.07.134
4
Charu C.A. 2018, Neural networks and deep learning: a Textbook. Springer, Heidelberg, Germany, pp 123-127.
5
Cho K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio 2014, Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. doi:10.48550/arXiv.1406.1078 10.3115/v1/D14-1179
6
Cho K.J., K.Y. Kim, and W.M. Yang 2015, Survey of ICT apply to plastic greenhouse, rack·pinion adaption to single span and CFD analysis. Protected Hort Plant Fac 24:308-316. (in Korean) doi:10.12791/KSBEC.2015.24.4.308 10.12791/KSBEC.2015.24.4.308
7
Choi H.Y., T.W. Moon, D.H. Jung, and J.E. Son 2019, Prediction of air temperature and relative humidity in greenhouse via a multilayer perceptron using environmental factors. Protected Hort Plant Fac 28:95-103. (in Korean) doi:10.12791/KSBEC.2019.28.2.95 10.12791/KSBEC.2019.28.2.95
8
Choi Y.S., H.J. Lee, and S.T. Joung 2012, A design and implementation of web-based green house automation system. J Korea Inst Electron Commun Sci 1519-1527. (in Korean) doi:10.13067/JKIECS.2012.7.6.1519 10.13067/JKIECS.2012.7.6.1519
9
Fatnassi H., C. Poncet, M.M. Bazzano, R. Brun, and N. Bertin 2015, A numerical simulation of the photovoltaic greenhouse microclimate. Solar Energy 120:575-584. doi:10.1016/j.solener.2015.07.019 10.1016/j.solener.2015.07.019
10
François C. 2017, Deep learning with Python. Manning Publications Company, NY, USA, pp 79-92.
11
Gabriel K.R. 1971, The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453-467. doi:10.1093/biomet/58.3.453 10.1093/biomet/58.3.453
12
Hong S.W., and I.B. Lee 2014, Predictive model of microenvironment in a naturally ventilated greenhouse for a modelbased control approach. Protected Hort Plant Fac 23:181-191. (in Korean) doi:10.12791/KSBEC.2014.23.3.181 10.12791/KSBEC.2014.23.3.181
13
Hope T., Y.S. Resheff, and I. Lieder 2017, Learning tensorflow: A guide to building deep learning systems. O'Reilly Media, CA, USA, pp 84-91.
14
Huh M.H. 2017, Representing variables in the latent space. Korean J Appl Stat 30:555-566. (in Korean) doi:10.5351/KJAS.2017.30.4.555 10.5351/KJAS.2017.30.4.555
15
Hwang I.C., H. Noh, D. Yang, and M. Kim 2021, Prediction of paprika yield using multiple linear regression. J Korean Inst Commun 46:21-11. (in Korean) doi:10.7840/kics.2021.46.11.2048 10.7840/kics.2021.46.11.2048
16
Kim D.H., B.M. Jenkins, T.R. Rumsey, M.W. Yore, and N.J. Kim 2007, Simulation and model validation of a horizontal shallow basin solar concentrator. Solar Energy 81(4):463-475. doi:10.1016/j.solener.2006.08.007 10.1016/j.solener.2006.08.007
17
Kim H.S. 2001, Prediction of cooling effect for fog cooling system in greenhouse by CFD simulation. Master Diss., Seoul National University, Seoul, Korea, pp 1-45. (in Korean)
18
Kim S.Y., and Y.J. Jung 2017, First learning machine learning. Hanbit Media, Seoul, Korea, pp 137-140. (in Korean)
19
Kwon H.W., K.C. Oh, Y. Choi, Y.G. Chung, and J. Kim 2021, Development and application of machine learning‐based prediction model for distillation column. Int J Intell 36:1970-1997. doi:10.1002/int.22368 10.1002/int.22368
20
Lee I.B., and T.H. Short 1999, Analysis of the efficiency of natural ventilation in multi-span greenhouse using CFD simulation. J Bio-Env Con 8:9-18. (in Korean)
21
Lee I.B., N.K. Yun, T. Boulard, J.C. Roy, S.H. Lee, G.W. Kim, S.K. Lee, and S.H. Kwon 2006a, Development of an aerodynamic simulation for studying microclimate of plantcanopy in greenhouse: (1) Study on aerodynamic resistance of tomato canopy through wind tunnel experiment. J Bio-Env Con 15:289-295. (in Korean)
22
Lee I.B., N.K. Yun, T. Boulard, J.C. Roy, S.H. Lee, G.W. Kim, S.W. Hong, and S.H. Sung 2006b, Development of an aerodynamic simulation for studying microclimate of plantcanopy in greenhouse: (2) Development of CFD model to study the effect of tomato plants on internal climate of greenhouse. J Bio-Env Con 15:296-305. (in Korean)
23
Lee J.K., J.W. Oh, Y.J. Cho, and D.H. Lee 2020, A research about time domain estimation method for greenhouse environmental factors based on artificial intelligence. Protected Hort Plant Fac 3:277-284. (in Korean) doi:10.12791/KSBEC.2020.29.3.277 10.12791/KSBEC.2020.29.3.277
24
Muller A.C., and S. Guido 2017, Introduction to machine learning with Python: a guide for data scientists. O'Reilly Media, CA, USA, pp 27-31.
25
Na M.H, Y. Pack, and W. Cho 2017, A study on optimal environmental factors of tomato using smart farm data. J Korean Data Inf Sci Soc 28:1427-1435 doi:10.7465/jkdi.2017.28.6.1427 10.7465/jkdi.2017.28.6.1427
26
Oh K.C., H.W. Kwon, J.W. Roh, Y.Y. Cho, H.D. Park, H.T. Cho, and J.H. Kim 2020, Development of machine learningbased platform for distillation column. Korean Chem Eng Res 58:565-572. (in Korean) doi:10.9713/kcer.2020.58.4.565 10.9713/kcer.2020.58.4.565
27
Park Y.M., S.M. Gang, J.H. Chae, and J.J. Lee 2018, Classification method of plant leaf using DenseNet. J Korea Multimedia Soc 21:571-582. doi:10.9717/kmms.2018.21.5.571 10.9717/kmms.2018.21.5.571
28
Song Y.E., A.Y. Moon, S.Y. An, and H.Y. Jung 2019, Prediction of smart greenhouse temperature-humidity based on multidimensional LSTMs. J Korean Soc Precis Eng 36(3):239-246. (in Korean) doi:10.7736/KSPE.2019.36.3.239 10.7736/KSPE.2019.36.3.239
29
Tadj N., T. Bartzanas, D. Fidaros, B. Draoui, and C. Kittas 2010, Influence of heating system on greenhouse microclimate distribution. Trans ASABE 53:225-238. doi:10.13031/2013.29498 10.13031/2013.29498
30
Yu I.H., N.K. Yun, M.W. Cho, H.R. Ryu, and D.G. Moon 2014, Development of CFD model for analyzing the air flow and temperature distribution in greenhouse with air-circulation fans. Korean J Agric Sci 41:461-472. (in Korean) doi:10.7744/cnujas.2014.41.4.461 10.7744/cnujas.2014.41.4.461
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 31
  • No :3
  • Pages :152-162
  • Received Date :2022. 03. 21
  • Revised Date :2022. 06. 10
  • Accepted Date : 2022. 06. 20