All Issue

2025 Vol.34, Issue 1 Preview Page

Original Articles

31 January 2025. pp. 19-26
Abstract
References
1

Arif Y., F. Sami, H. Siddiqui, and A. Bajguz 2020, Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ Exp Bot 175:104040. doi:10.1016/j.envexpbot.2020.104040

10.1016/j.envexpbot.2020.104040
2

Bhattachrya A. 2022, Effect of low temperature stress on photosynthesis and allied traits: A review. In A Bhattacharaya, ed, Physiological processes in plants under low temperature stress. Springer, Singapore, pp 199-297. doi:10.1007/7/978-981-16-9037-2

10.1007/978-981-16-9037-2_3
3

Bradford M.M. 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1005/abio.1976.9999

10.1006/abio.1976.9999942051
4

Buchanan B.B., and W. Gruissem 2000, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, p 150.

5

Cheng F., J.Y. Lu, G. Min, S. Kai, Q. Kong, Y. Huang, and Z. Bie 2016, Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Front Plant Sci 7:1519. doi:10.3389/fpls.2016.01519

10.3389/fpls.2016.01519
6

Dempsey D.A., A.C. Vlot, M.C. Wildermuth, and D.F. Klessig 2011, Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156. doi:10.1199/tab.0156

10.1199/tab.015622303280PMC3268552
7

Ding Y. 2018, Progress of plant response to low temperature stress and research methods. Jiangsu Agric Sci 47:31-36. doi:10.15889/j.issn.1002-1302.2019.14.007

8

Ding Y., and S. Yang 2022, Surviving and thriving: how plants perceive and respond to temperature stress. Dev Cell 57: 947-958. doi:10.1016/j.devcel.2022.03.010

10.1016/j.devcel.2022.03.01035417676
9

Dong C., L. Li, Q. Shang, X. Liu, and Z. Zhang 2014, Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687-700. doi:10.1007/s00425-014-2115-1

10.1007/s00425-014-2115-125034826
10

Farmer E.E., and M.J. Mueller 2013, ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429-450. doi:10.1146/annurev-arplant-050312-120132

10.1146/annurev-arplant-050312-12013223451784
11

Ganesan V., and G. Thomas 2001, Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant sci 160:1095-1106. doi:10.1016/S0168-9452(01)00327-27

10.1016/S0168-9452(01)00327-211337066
12

Gill S.S., and N. Tureja 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909-930. doi:10.1016/j.plaphy.2010.08.016

10.1016/j.plaphy.2010.08.01620870416
13

Hara M., J. Furukawa, A. Sato, T. Mizoguchi, and K. Miura 2012, Abiotic stress and role of salicylic acid in plants; Abiotic Stress Responses in Plants; Ahmad, P., Prasad, M.N.V., Eds.; Springer-Verlag: Berlin, Germany, pp 235-251.

10.1007/978-1-4614-0634-1_13
14

Kang H.M., and M.E. Saltveit 2002, Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571-576. doi:10.1034/j.1399-3054.2002.1150411.x

10.1034/j.1399-3054.2002.1150411.x12121463
15

Khan M.I.R., M. Fatma, T.S. Per, N.A. Anjum, and N.A. Khan 2015, Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:1-17. doi:10.3389/fpls.2015.00462

10.3389/fpls.2015.00462
16

Kidokoro S., K. Shinozaki, and K. Yamaguchi-Shinozaki 2022, Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci 27:922-935. doi:10.1016/j.tplants.2022.01.008

10.1016/j.tplants.2022.01.00835210165
17

Klessig D.F., H.W. Choi, and D.A. Dempsey 2018, Systemic acquired resistance and salicylic acid: Past, present, and future. Mol Plant-Microbe Interact 31:871-888. doi:10.1094/MPMI-03-18-0067-CR

10.1094/MPMI-03-18-0067-CR29781762
18

Korean Statistical Information Service (KOSIS) 2024, vegetable production (green vegetables) 1980-2023. (in Korean)

19

Kosmala A., A. Bocian, M. Rapacz, B. Jurczyk, and Z. Zwierzykowski 2009, Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 6:3595-3609. doi:10.1093/jxb/erp205

10.1093/jxb/erp20519553368
20

Kováčik J., J. Grúz, M. Bačkor, M. Strnad, and M. Repčák 2009, Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plant. Plant Cell Rep 28:135-143. doi:10.1007/s00299-008-0627-5

10.1007/s00299-008-0627-518972114
21

Lee H.J., J.S. Kim, S.G. Lee, S.K. Kim, B.H. Mun, and C.S. Choi 2017, Glutamic acid foliar application enhances antioxidant enzyme activities in kimchi cabbages leaves treated with low air temperature. Hortic Sci Technol 35:700-706. (in Korean) doi:10.12972/kjhst.20170074

10.12972/kjhst.20170074
22

Lee J.G., J. Lee, S. Park, Y.A. Jang, S.S. Oh, T.C. Seo, H.K. Yoon, and Y.C. Um 2011, Effect of low night-time temperature during seedling stage on growth of spring Chinese cabbage. J Bio-Env Con 20:326-332. (in Korean) https://db.koreascholar.com/Article/Detail/252635

23

Lee J.H., H.J. Lee, S.H. Wi, I.H. Yu, K.H. Yeo, S.W. An, Y.A. Jang, and S.H. Jang 2021, Enhancement of growth and antioxidant enzyme activities on kimchi cabbage by melatonin foliar application under high temperature and drought stress conditions. Hortic Sci Technol 39:583-592. (in Korean) doi:10.7235/HORT.20210052

10.7235/HORT.20210052
24

Li X., J. Cai, F. Liu, T. Dai, W. Cao, and D. Jiang 2014, Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol Biochem 82:34-43. doi:10.1016/j.plaphy.2014.05.005

10.1016/j.plaphy.2014.05.00524887010
25

Luo Y., Z. Su, T. Bi, X. Cui, and Q. Lan 2014, Salicylic acid improves chilling tolerance by affecting antioxidant enzymes and osmoregulators in sacha inchi (Plukenetia volubilis). Braz J Bot 37:357-363. doi:10.1007/s40415-014-0067-0

10.1007/s40415-014-0067-0
26

Mao H., M. Chen, Y. Su, N. Wu, M. Yuan, S. Yuan, M. Brestic, M. Zivcak, H. Zhang, and Y. Chen 2018, Comparison on photosynthesis and antioxidant defense systems in wheat with different ploidy levels and octoploid Triticale. Int J Mol 19:3006. doi:10.3390/ijms19103006

10.3390/ijms1910300630279334PMC6213355
27

Min K., L. Showman, A. Perera, and R. Arora 2018, Salicylic acid-induced freezing tolerance in spinach (Spinacia oleracea L.) leaves explored through metabolite profiling. Environ Exp Bot 156:214-227. doi:10.1016/j.envexpbot.2018.09.011

10.1016/j.envexpbot.2018.09.011
28

Min K., and S.R. Lee 2021, Exogenous salicylic acid alleviates freeze-thaw injury of cabbage (Brassica oleracea L.) leaves. Sustainability 13:11437. doi:10.3390/su132011437

10.3390/su132011437
29

Mittler R. 2017, ROS are good. Trends Plant Sci 22:11-19. doi:10.1016/j.tplants.2016.08.002

10.1016/j.tplants.2016.08.00227666517
30

Miura K., and Y. Tada 2014, Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:1-12. doi:10.3389/fpls.2014.00004

10.3389/fpls.2014.0000424478784PMC3899523
31

Peng X., L. Teng, Z. Yan, M. Zhao, and S. Shen 2015, The cold responsive mechanism of the paper mulberry: decreased photosynthesis capacity and increased starch accumulation. BMC genomics 16:898. doi:10.1186/s12864-015-2047-6

10.1186/s12864-015-2047-626537770PMC4634900
32

Rao M.V., G. Paliyath, D.P. Ormrod, D.P. Murr, and C.B. Watkins 1997, Influence of salicylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes: salicylic acid-mediated oxidative damage requires H2O2, Plant Physiol 115:137-149. doi:10.1104/pp.115.1.137

10.1104/pp.115.1.1379306697PMC158469
33

Rivas-San Vicente M., and J. Plasencia 2011, Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321-3338. doi:10.1093/jxb/err031

10.1093/jxb/err03121357767
34

Ruellan E., M. Vaultier, A. Zachowski, and V. Hurry 2009, Cold signalling and cold acclimation in plants. Adv Bot Res 49:35-150. doi:10.1016/S0065-2296(08)00602-2

10.1016/S0065-2296(08)00602-2
35

Seo P.J., M.J. Park, and C.M. Park 2013, Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta 237:1415-1424. doi:10.1007/s00425-013-1882-4

10.1007/s00425-013-1882-423624977PMC3664756
36

Sharma Y.K., J. León, I. Raskin, and K.R. Davis 1996, Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099-5104. doi:10.1073/pnas.93.10.5099

10.1073/pnas.93.10.50998643534PMC39413
37

Shin H., K. Min, and R. Arora 2018, Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology 81:192-200. doi:10.1016/j.cryobiol.2017.10.006

10.1016/j.cryobiol.2017.10.00629061524
38

Singh S. 2023, Salicylic acid elicitation improves antioxidant activity of spinach leaves by increasing phenolic content and enzyme levels. Food Chemi Adv 2. 100199. doi:10.1016/j.focha.2022.100156.g

10.1016/j.focha.2022.100156
39

Venegas-Molina J., S. Proietti, J. Pollier, W. Orozco-Freire, D. Ramirez-Villacis, and A. Leon-Reyes 2020, Induced tolerance to abiotic and biotic stresses of broccoli and Arabidopsis after treatment with elicitor molecules. Sci Rep 10:1-17. doi:10.1038/s41598-020-67074-7

10.1038/s41598-020-67074-732587286PMC7316721
40

Wang W., X. Wang, M. Huang, J. Cai, Q. Zhou, T. Dai, W. Cao, and D. Jiang 2018, Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front. Plant Sci 9. doi:10.3389/fpls.2018.01137

10.3389/fpls.2018.0113730123235PMC6085453
41

Wang W., X. Wang, M. Huang, J. Cai, Q. Zhou, T. Dai, and D. Jiang 2021, Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid. J Plant Growth Regul 40:811-823. doi:10.1007/s00344-020-10144-x

10.1007/s00344-020-10144-x
42

Xie Z., Y. Chu, W. Zhang, D. Lang, and X. Zhang 2019, Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158:99-106. doi:10.1016/j.envexpbot.2018.11.021

10.1016/j.envexpbot.2018.11.021
43

Yang W., C. Zhu, X. Ma, G. Li, L. Gan, and D. Ng 2013, Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings. PLoS 8:e84580. doi:10.1371/journal.pone.0084580

10.1371/journal.pone.008458024386397PMC3874037
44

Zhang Q., D. Li, W. Wang, X. Song, Y. Wang, X. Yang, D. Qin, T. Xie, and D. Yang 2021, Exogenous salicylic acid improves chilling tolerance in maize seedlings by improving plant growth and physiological characteristics. Agronomy 11:1341. doi:10.3390/agronomy11071341

10.3390/agronomy11071341
45

Zhu J.K. 2016, Abiotic stress signaling and responses in plants. Cell 167:313-324. doi:10.1016/j.cell.2016.08.029

10.1016/j.cell.2016.08.02927716505PMC5104190
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 34
  • No :1
  • Pages :19-26
  • Received Date : 2024-10-22
  • Revised Date : 2024-11-12
  • Accepted Date : 2024-11-12