All Issue

2024 Vol.33, Issue 1 Preview Page

Original Articles

31 January 2024. pp. 45-54
Abstract
References
1
Ainsworth E.A., and K.M. Gillespie 2007, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875-877. doi:10.1038/nprot.2007.102 10.1038/nprot.2007.10217446889
2
Artés-Hernández F., N. Castillejo, and L. Martínez-Zamora 2022, UV and visible spectrum led lighting as abiotic elicitors of bioactive compounds in sprouts, microgreens, and baby leaves-A comprehensive review including their mode of action. Foods 11:265. doi:10.3390/foods11030265 10.3390/foods1103026535159417PMC8834035
3
Artés‐Hernández F., V.H. Escalona, P.A. Robles, G.B. Martínez‐Hernández, and F. Artes 2009, Effect of UV‐C radiation on quality of minimally processed spinach leaves. J Sci Food Agric 89:414-421. doi:10.1002/jsfa.3460 10.1002/jsfa.3460
4
Baker N.R., and E. Rosenqvist 2004, Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. doi:10.1093/jxb/erh196 10.1093/jxb/erh19615258166
5
Bantis F., M. Fotelli, Z.S. Ilić, and A. Koukounaras 2020, Physiological and phytochemical responses of spinach baby leaves grown in a PFAL system with leds and saline nutrient solution. Agriculture 10:574. doi:10.3390/agriculture10110574 10.3390/agriculture10110574
6
Beiranvandi M., N. Akbari, A. Ahmadi, H. Mumivand, and F. Nazarian 2022, Biochar and super absorbent polymer improved growth, yield, and phytochemical characteristics of Satureja rechingeri Jamzad in water-deficiency conditions. Ind Crops Prod 183:114959. doi:10.1016/j.indcrop.2022.114959 10.1016/j.indcrop.2022.114959
7
Bian Z.H., Q.C. Yang, and W.K. Liu 2015, Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J Sci Food Agric 95:869-77. doi:10.1002/jsfa.6789 10.1002/jsfa.678924930957
8
Brazaitytė A., A. Viršilė, J. Jankauskienė, S. Sakalauskienė, G. Samuolienė, R. Sirtautas, A. Novičkovas, L. Dabašinskas, J. Miliauskiene, and V. Vaštakaite 2015, Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. Int Agrophys 291:13-22. doi:10.1515/intag-2015-0004 10.1515/intag-2015-0004
9
Cerovic Z.G., A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya 2002, The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663-1676. doi:10.1046/j.1365-3040.2002.00942.x 10.1046/j.1365-3040.2002.00942.x
10
Chen Y., T. Li, Q. Yang, Y. Zhang, J. Zou, and Z. Bian 2019, UVA radiation is beneficial for yield and quality of indoor cultivated lettuce. Front Plant Sci 10:1563-1572. doi:10.3389/fpls.2019.01563 10.3389/fpls.2019.0156331867029PMC6910135
11
Choi D.S., T.K.L. Nguyen, and M.M. Oh 2022, Growth and biochemical responses of kale to supplementary irradiation with different peak wavelengths of UV-A light-emitting diodes. Hortic Environ Biotechnol 63:65-76. doi:10.1007/s13580-021-00377-4 10.1007/s13580-021-00377-4
12
Coohill T.P. 1989, Ultraviolet action spectra (280 to 380 nm) and solar effectiveness spectra for higher plants. Photochem Photobiol 50:451-457. doi:10.1111/j.1751-1097.1989.tb05549.x 10.1111/j.1751-1097.1989.tb05549.x
13
Escalona V.H., E. Aguayo, G.B. Martínez-Hernández, and F. Artés 2010, UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biol Technol 56:223-231. doi:10.1016/j.postharvbio.2010.01.008 10.1016/j.postharvbio.2010.01.008
14
Fitzner M., M. Schreiner, and S. Baldermann 2023, Between eustress and distress: UVB induced changes in carotenoid accumulation in halophytic Salicornia europaea. J Plant Physiol 291:154124. doi:10.1016/j.jplph.2023.154124 10.1016/j.jplph.2023.15412437944241
15
Gao M., R. He, R. Shi, Y. Li, S. Song, Y. Zhang, W. Su, and H. Liu 2021, Combination of selenium and UVA radiation affects growth and phytochemicals of broccoli microgreens. Molecules 26:4646. doi:10.3390/molecules26154646 10.3390/molecules2615464634361799PMC8348033
16
Gao W., D. He, F. Ji, S. Zhang, and J. Zheng 2020, Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 10:1082. doi:10.3390/agronomy10081082 10.3390/agronomy10081082
17
Grant R.H. 1997, Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26-40. doi:10.1007/bf02439408 10.1007/BF02439408
18
He R., Y. Li, S. Ou, M. Gao, Y. Zhang, S. Song, and H. Liu 2021a, Regulation of growth and main health-promoting compounds of Chinese kale baby-leaf by UV-A and FR light. Front Plant Sci 12:799376. doi:10.3389/fpls.2021.799376 10.3389/fpls.2021.79937634975989PMC8719463
19
He R., Y. Zhang, S. Song, W. Su, Y. Hao, and H. Liu 2021b, UV-A and FR irradiation improves growth and nutritional properties of lettuce grown in an artificial light plant factory. Food Chem 345:128727. doi:10.1016/j.foodchem.2020.128727 10.1016/j.foodchem.2020.12872733307433
20
Hideg É., M.A. Jansen, and Å. Strid 2013, UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?. Trends Plant Sci 18:107-115. doi:10.1016/j.tplants.2012.09.003 10.1016/j.tplants.2012.09.00323084465
21
Hoagland D.R., and D.I. Arnon 1950, The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1-37.
22
Hollósy F. 2002, Effects of ultraviolet radiation on plant cells. Micron 33:179-197. doi:10.1016/S0968-4328(01)00011-7 10.1016/S0968-4328(01)00011-711567887
23
Ibdah M., A. Krins, H.K. Seidlitz, W. Heller, D. Strack, and T. Vogt 2002, Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ 25:1145-1154. doi:10.1046/j.1365-3040.2002.00895.x 10.1046/j.1365-3040.2002.00895.x
24
Jang S.N., G.O. Lee, H.S. Sim, J.S. Bae, A.R. Lee, D.Y. Cho, K.M. Cho, and K.H. Son 2022, Effect of pre-harvest irradiation of UV-A and UV-B LED in ginsenosides content of ginseng sprouts. J Bio-Env Con 31:28-34. doi:10.12791/KSBEC.2022.31.1.028 10.12791/KSBEC.2022.31.1.028
25
Jenkins G.I., I. Givens, S. Baxter, A.M. Minihane, and E. Shaw 2008, Environmental regulation of flavonoid biosynthesis, In I Givens, S Baxter, AM Minihane, E Shaw, eds, Health Benefits of Organic Food: Effects of the Environment. CABI, Wallingford, UK, pp 240-262.
26
Jordan B.R. 2002, Molecular response of plant cells to UV-B stress. Funct Plant Biol 29:909-916. doi:10.1071/FP02062 10.1071/FP0206232689541
27
Kang S., J.E. Kim, S. Zhen, and J. Kim 2022, Mild-intensity UV-A radiation applied over a long duration can improve the growth and phenolic contents of sweet basil. Front Plant Sci 13:858433. doi:10.3389/fpls.2022.858433 10.3389/fpls.2022.85843335519818PMC9062229
28
Kasım M.U., and R. Kasım 2017, Yellowing of fresh-cut spinach (Spinacia oleracea L.) leaves delayed by UV-B applications. Inf Process Agric 4:214-219. doi:10.1016/j.inpa.2017.05.006 10.1016/j.inpa.2017.05.006
29
Lee J. H., S. Tanaka, and E. Goto 2022, Growth and biosynthesis of phenolic compounds of canola (Brassica napus L.) to different ultraviolet (UV)-B wavelengths in a plant factory with artificial light. Plants 11:1732. doi:10.3390/plants11131732 10.3390/plants1113173235807684PMC9268760
30
Lee J.H., M.C. Kwon, E.S. Jung, C.H. Lee, and M.M. Oh 2019a, Physiological and metabolomic responses of kale to combined chilling and UV-A treatment. Int J Mol Sci 20:4950. doi:10.3390/ijms20194950 10.3390/ijms2019495031597250PMC6801958
31
Lee J.H., M.M. Oh, and K.H. Son 2019b, Short-term ultraviolet (UV)-A light-emitting diode (LED) radiation improves biomass and bioactive compounds of kale. Front Plant Sci 10:1042. doi:10.3389/fpls.2019.01042 10.3389/fpls.2019.0104231481968PMC6710713
32
Lee J.W., S.Y. Park, and M.M. Oh 2021, Supplemental radiation of ultraviolet-A light-emitting diode improves growth, antioxidant phenolics, and sugar alcohols of ice plant. Hortic Environ Biotechnol 62:559-570. doi:10.1007/s13580-021-00340-3 10.1007/s13580-021-00340-3
33
Li Y., Y. Zheng, D. Zheng, Y. Zhang, S. Song, W. Su, and H. Liu 2020, Effects of supplementary blue and UV-A LED lights on morphology and phytochemicals of Brassicaceae baby-leaves. Molecules 25:5678. doi:10.3390/molecules25235678 10.3390/molecules2523567833276420PMC7729980
34
Lucas R.M., M. Norval, R.E. Neale, A.R. Young, F.R. de Gruijl, Y. Takizawa, and J.C. van der Leun 2015, The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem Photobiol Sci 14:53-87. doi:10.1039/c4pp90033b 10.1039/c4pp90033b25383760
35
Mantha S.V., G.A. Johnson, and T.A. Day 2001, Evidence from action and fluorescence spectra that UV-induced violet-blue-green fluorescence enhances leaf photosynthesis. Photochem Photobiol 73:249-256. doi:10.1562/0031-8655(2001)0730249EFAAFS2.0.CO2 10.1562/0031-8655(2001)0730249EFAAFS2.0.CO211281021
36
Mao P., F. Duan, Y. Zheng, and Q. Yang 2021, Blue and UV‐A light wavelengths positively affected accumulation profiles of healthy compounds in pak‐choi. J Sci Food Agric 101:1676-1684. 10.1002/jsfa.1078832888328
37
Martínez-Sánchez A., J. Guirao-Martínez, J.A. Martínez, P. Lozano-Pastor, and E. Aguayo 2019, Inducing fungal resistance of spinach treated with preharvest hormetic doses of UV-C. LWT 113:108302. doi:10.1016/j.lwt.2019.108302 10.1016/j.lwt.2019.108302
38
McCree K.J. 1971, The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric For Meteorol 9:191-216. doi:10.1016/0002-1571(71)90022-7 10.1016/0002-1571(71)90022-7
39
McCree K.J. 1972, Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric For Meteorol 10:443-453. doi:10.1016/0002-1571(72)90045-3 10.1016/0002-1571(72)90045-3
40
Miao C., S. Yang, J. Xu, H. Wang, Y. Zhang, J. Cui, H. Zhang, H. Jin, P. Lu, L. He, J. Yu, Q. Zhou, and X. Ding 2023, Effects of light intensity on growth and quality of lettuce and spinach cultivars in a plant factory. Plants 12:3337. doi:10.3390/plants12183337 10.3390/plants1218333737765503PMC10534974
41
Miller N.J., and C.A. Rice-Evans 1996, Spectrophotometric determination of antioxidant activity. Redox Rep 2:161-171. doi:10.1080/13510002.1996.11747044 10.1080/13510002.1996.1174704427406072
42
Murchie E.H., and T. Lawson 2013, Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983-3998. doi:10.1093/jxb/ert208 10.1093/jxb/12432039
43
Neugart S., and M. Schreiner 2018, UVB and UVA as eustressors in horticultural and agricultural crops. Sci Hortic 234:370-381. doi:10.1016/j.scienta.2018.02.021 10.1016/j.scienta.2018.02.021
44
Park S., E. Cho, J. An, B. Yoon, K. Choi, and E. Choi 2019, Plant growth and ascorbic acid content of Spinacia oleracea grown under different light-emitting diodes and ultraviolet radiation light of plant factory system. J Bio-Env Con 28:1-8. doi:10.12791/KSBEC.2019.28.1.1 10.12791/KSBEC.2019.28.1.1
45
Park S.Y., M.Y. Lee, C.H. Lee, M.M. Oh 2020, Physiologic and metabolic changes in Crepidiastrum denticulatum according to different energy levels of UV-B radiation. Int J Mol Sci 21:7134. doi:10.3390/ijms21197134 10.3390/ijms2119713432992615PMC7582291
46
Proestos C. 2018, Superfoods: Recent data on their role in the prevention of diseases. Current Res Nutrition Food Sci J 6:576-593. doi:10.12944/CRNFSJ.6.3.02 10.12944/CRNFSJ.6.3.02
47
Qin H., Y. Xu, B. Liu, Y. Gao, Y. Zheng, and Q. Li 2023, UV-A supplement improved growth, antioxidant capacity, and anthocyanin accumulation in purple lettuce (Lactuca sativa L.). Horticulturae 9:634. doi:10.3390/horticulturae9060634 10.3390/horticulturae9060634
48
Samuoliene G., A. Virsile, J. Miliauskienė, P. Haimi, K. Laužikė, J. Jankauskienė, A. Novičkovas, A. Kupčinskienė, and A. Brazaitytė 2020, The photosynthetic performance of red leaf lettuce under UV-A irradiation. Agronomy 10:761. doi:10.3390/agronomy10060761 10.3390/agronomy10060761
49
Semenova N.A., Y.A. Proshkin, A.A. Smirnov, A.S. Dorokhov, A.S. Ivanitskikh, D.A. Burynin, A.A. Dorokhov, N.I. Uyutova, N.O. Chilingaryan 2023, The influence of the spectral composition and light intensity on the morphological and biochemical parameters of spinach (Spinacia oleracea L.) in vertical farming. Horticulturae 9:1130. doi:10.3390/horticulturae9101130 10.3390/horticulturae9101130
50
Vaštakaitė-Kairienė V., A. Brazaitytė, J. Miliauskienė, and E.S. Runkle 2022, Red to blue light ratio and iron nutrition influence growth, metabolic response, and mineral nutrients of spinach grown indoors. Sustainability 14:12564. doi:10.3390/su141912564 10.3390/su141912564
51
Verdaguer D., M.A. Jansen, L. Llorens, L.O. Morales, and S. Neugart 2017, UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci 255:72-81. doi:10.1016/j.plantsci.2016.11.014 10.1016/j.plantsci.2016.11.01428131343
52
Viršilė A., K. Laužikė, R. Sutulienė, A. Brazaitytė, G. Kudirka, and G. Samuolienė 2023, Distinct impacts of UV-A light wavelengths on nutraceutical and mineral contents in green and purple basil cultivated in a controlled environment. Horticulturae 9:1168. doi:10.3390/horticulturae9111168 10.3390/horticulturae9111168
53
Zhang Y., E. Kaiser, Y. Zhang, J. Zou, Z. Bian, Q. Yang, and T. Li 2020, UVA radiation promotes tomato growth through morphological adaptation leading to increased light interception. Env Exp Bot 176:104073. doi:10.1016/j.envexpbot.2020.104073 10.1016/j.envexpbot.2020.104073
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 33
  • No :1
  • Pages :45-54
  • Received Date : 2024-01-05
  • Revised Date : 2024-01-25
  • Accepted Date : 2024-01-26