All Issue

2021 Vol.30, Issue 1

Original Articles

31 January 2021. pp. 1-9
Abstract
References
1
Albright L., A. Both, and A. Chiu. 2000. Controlling greenhouse light to a consistent daily integral. Trans. ASAE. 43:421. 10.13031/2013.2721
2
Cho Y.Y., K.Y. Choi, Y.B. Lee, and J.E. Son. 2012. Growth characteristics of sowthistle (Ixeris dentata Nakai) under different levels of light intensity, electrical conductivity of nutrient solution, and planting density in a plant factory. Hort. Environ. Biotechnol. 53:368-372. 10.1007/s13580-012-0691-1
3
Craver J.K., J.R. Gerovac, R. Lopez, and D.A. Kopsell. 2017. Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within Brassica microgreens. J. Amer. Soc. Horticultural Sci. 142:3-12. 10.21273/JASHS03830-16
4
Duysens L.N.M. 1952. Transfer of excitation energy in photosynthesis. PhD thesis. State Univ. Utrecht, The Netherlands.
5
Easlon H.M., K.S. Nemali, J.H. Richards, D.T. Hanson, T.E. Juenger, and J.K. McKay. 2014. The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. Photosynthesis research. 119:119-129. 10.1007/s11120-013-9891-523893317PMC3889294
6
Evans J. and H. Poorter. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24:755-767. 10.1046/j.1365-3040.2001.00724.x
7
Fan X., Z.G. Xu, X.Y. Liu, C.M. Tang, L.W. Wang, and X. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic. 153:50-55. 10.1016/j.scienta.2013.01.017
8
Fu Y., H. Li, J. Yu, H. Liu, Z. Cao, N.S. Manukovsky, and H. Liu. 2017. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Scientia horticulturae, 214:51-57. 10.1016/j.scienta.2016.11.020
9
Gent M.P. 2014. Effect of daily light integral on composition of hydroponic lettuce. HortScience 49:173-179. 10.21273/HORTSCI.49.2.173
10
Ghasemzadeh A., H.Z. Jaafar, and A. Rahmat. 2010. Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. International J. Mol. Sci. 11:4539-4555. 10.3390/ijms1111453921151455PMC3000099
11
Gioia F.D., M. Renna, and P. Santamaria. 2017. Sprouts, microgreens and "baby leaf" vegetables. Springer. 403-432. 10.1007/978-1-4939-7018-6_11
12
Hetherington A.M. and F.I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature. 424: 901-908. 10.1038/nature0184312931178
13
Jurik T.W., J.F. Chabot, and B.F. Chabot. 1982. Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria virginiana). Plant Physiol. 70: 1044-1048. 10.1104/pp.70.4.104416662610PMC1065822
14
Khan S.R., R. Rose, D.L. Haase, and T.E. Sabin. 2000. Effects of shade on morphology, chlorophyll concentration, and chlorophyll fluorescence of four Pacific Northwest conifer species. New forests, 19:171-186. 10.1023/A:1006645632023
15
Kim J.K., H.M. Kang, J.K. Na, and K.Y. Choi. 2019. Changes in growth characteristics and functional components of Lactuca indica L. 'Sunhyang' baby leaf vegetable by light Intensity and cultivation period. Kor. Hort. Sci. Technol. 37:579-588.
16
Kim Y.H., H.J. Kim, J.W. Lee, and J.M. Kim. 2008. Growth of potato plug seedlings as affected by photosynthetic photon flux in a closed transplants production system. J. Biosystems Eng. 33:106-114. 10.5307/JBE.2008.33.2.106
17
Kitaya Y., G. Niu, T. Kozai, and M. Ohashi. 1998. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience. 33:988-99l. 10.21273/HORTSCI.33.6.988
18
Korea Rural Community Broadcasting (KRCB). 2019. http://www. newskr.kr/news/articleView.html?idxno=30924. Accessed 05 Aug 2019.
19
Kwack Y., D.S. Kim, and C. Chun. 2015. Growth and quality of baby leaf vegetables hydroponically grown in plant factory as affected by composition of nutrient solution. Protected Hortic. Plant Fac. 24:271-274 (in Korean). 10.12791/KSBEC.2015.24.4.271
20
Lee J.G. and E. Heuvelink. 2003. Simulation of leaf area development based on dry matter partitioning and specific leaf area for cut chrysanthemum. Annals of Botany 91: 319-327. 10.1093/aob/mcg01512547684PMC4244956
21
Lee J.M. 2014. Vegetable sciences general. Hyangmunsa, 109-113. 10.1016/j.sbspro.2013.12.429
22
Lee S.C., J.H. Kim, S.M. Jeong, D.R. Kim, J.U. Ha, K.C. Nam, and D.U. Ahn. 2003. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agri. Food Chem. 51:4400-4403. 10.1021/jf030028512848517
23
Lee S.Y., H.J. Kim, and J.H. Bae. 2011. Growth, vitamin C, and mineral contents of Sedum sarmentosum in soil and hydroponic cultivation. Kor. J. Hort. Sci. Technol. 29:195-200 (in Korean).
24
Lichtenthaler H.K., A. Ač, M.V. Marek, J. Kalina, and O. Urban. 2007. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem. 45: 577-588. 10.1016/j.plaphy.2007.04.00617587589
25
Lobos G.A., J.B. Retamales, J.F. Hancock, J.A. Flore, N. Cobo, and A. del Pozo. 2012. Spectral irradiance, gas exchange characteristics and leaf traits of vaccinium corymbosum L. 'Elliott'grown under photo-selective nets. Environ. Exp. Bot. 75:142-149. 10.1016/j.envexpbot.2011.09.006
26
Logan B.A., W.C. Stafstrom, M.J. Walsh, J.S. Reblin, and K.S. Gould. 2015. Examining the photoprotection hypothesis for adaxial foliar anthocyanin accumulation by revisiting comparisons of green-and red-leafed varieties of coleus (Solenostemon scutellarioides). Photosynthesis research. 124:267-274. 10.1007/s11120-015-0130-025862643
27
Mackinney G. 1941. Absorption of light by Chlorophyll solution. J. Bio. Che. 140:315-322.
28
Noh H., J. Kim, S. Kim, I. Kim, and S. Choi. 2014. Effects of planting distances on the growth and yield of Lactuca indica L. 'Seonhyang'. HC2014:1129:127-130. 10.17660/ActaHortic.2016.1129.19
29
Park J.H. 2014. A study on physiological activity of extracts in different organs from Lactuca indica L. MS thesis. Chosun Univ. p. 1-3.
30
Park M.H. and Y.B. Lee. 1999. Effects of light intensity and nutrient level on growth and quality of leaf lettuce in a plant factory. Protected Hort. Plant Fac. 8:108-114.
31
Park S.Y., S.B. Oh, S.M. Kim, Y.Y. Cho, and M.M. Oh. 2016. Evaluating the effects of a newly developed nutrient solution on growth, antioxidants, and chicoric acid contents in Crepidiastrum denticulatum. Horti. Environ. Biotechnol. 57:478-486. 10.1007/s13580-016-1060-2
32
Pérez-López U., C. Sgherri, J. Miranda-Apodaca, F. Micaelli, M. Lacuesta, A. Mena-Petite, and A. Muñoz-Rueda. 2018. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2. Plant Physiol. Biochem. 123:233-241. 10.1016/j.plaphy.2017.12.01029253801
33
Rabino I. and A.L. Mancinelli. 1986. Light, temperature, and anthocyanin production. Plant Physiol. 81:922-924. 10.1104/pp.81.3.92216664926PMC1075451
34
Rural Development Administration (RDA). 2013. Standard farming manual-sprout and baby leaf vegetable. 99-103.
35
Subhasree B., R. Baskar, R.L. Keerthana, R.L. Susan, and P. Rajasekaran. 2009. Evaluation of antioxidant potential in selected green leafy vegetables. Food chemistry. 115:1213-1220. 10.1016/j.foodchem.2009.01.029
36
Yoon C.G. and H.K. Choi. 2011. A study on the various light source radiation conditions and use of LED illumination for plant factory. J. Kor. Institute of Illuminating and Electrical Installation Engineers 25:14-22. 10.5207/JIEIE.2011.25.10.014
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 30
  • No :1
  • Pages :1-9
  • Received Date : 2020-10-12
  • Revised Date : 2020-12-07
  • Accepted Date : 2020-12-10