All Issue

2017 Vol.26, Issue 2 Preview Page
30 April 2017. pp. 123-132
Abstract
References
1
Carvalho R.F., M. Takaki, and R.A. Azevedo. 2011. Plant pigments: the many face of light perception. Acta Physiol. Plant 33:241-248.
10.1007/s11738-010-0533-7
2
Dong C, L. Shao, G. Liu, M. Wang, H. Liu, B. Xie, B. Li, Y. Fu, and H. Liu. 2015. Photosynthetic characteristics, antioxidant capacity and biomass yield of wheat exposed to intermittent light irradiation with millisecond-scale periods. J. Plant Physiol. 184:28-36.
10.1016/j.jplph.2015.06.01226210319
3
Folta K.M. and S.A. Maruhnich. 2007. Green light: a signal to slow down or stop. J. Exp. Bot. 58:3099-3111.
10.1093/jxb/erm13017630292
4
Folta, K.M. and K.S. Childers. 2008. Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience 43:1957-1964
10.21273/HORTSCI.43.7.1957
5
Galen, C., J.J. Rabenold, and E. Liscum. 2007. Functional ecology of a blue light photoreceptor: effects of phototropin1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Pytologist 173:91-99.
10.1111/j.1469-8137.2006.01893.x17176396
6
Goins, G.D., N.C. Yorio, M.M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48:1407-1413.
10.1093/jxb/48.7.140711541074
7
Hashimoto Y, Y. Yi, F. Nyunoya, Y. Anzai, H. Yamazaki, S. Nakayama, and A. Ikeda. 1987. Vegetable growth as affected by on-off light intensity developed for vegetable factory. Acta Hortic. 229:259-264.
10.17660/ActaHortic.1988.229.26
8
Jishi T., R. Matsuda, and K. Fujiwara. 2015 A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light. Photosynth Res. 124:107-116.
10.1007/s11120-015-0107-z25736464
9
Johkan M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
10.21273/HORTSCI.45.12.1809
10
Johkan M, K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 75:128-133.
10.1016/j.envexpbot.2011.08.010
11
Kim H.H., R. Wheeler, J.C. Sager, N. Yorio, and G. Goins. 2005. Light-emitting diodes as an illumination source for plants: A review of research at Kennedy Space Center. Habitat (Elmsford) 10:71-78.
10.3727/15429660577479123215751143
12
Lee, G.I., H.J. Kim, S.J. Kim, J.W. Lee, and J.S. Park. 2016. Increased growth by LED and accumulation of functional materials by fluorescence lamps in a hydroponics culture system for Angelica gigas. Protected Horticulture and Plant Factory 25:42-48.
10.12791/KSBEC.2016.25.1.42
13
Liu, M., Z. Xu, S. Guo, C. Tang, X. Liu, and X. Jao. 2014. Evaluation of leaf morphology, structure and biochemical substance of balloon flower (Platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra. Sci. Hortic. 174:112-118.
10.1016/j.scienta.2014.05.006
14
Loo K.H., W.K. Lun, S.C. Tan, Y.M. Lai, and C.K. Tse. 2009. On driving techniques for LEDs: toward a generalized methodology. IEEE Trans. on Power Electron 24:2967-2976.
10.1109/TPEL.2009.2021183
15
Matsuda R, K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2007. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci. Plant Nutr. 53:459-465.
10.1111/j.1747-0765.2007.00150.x
16
McCree K.J. 1972. Action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 9:191-216.
10.1016/0002-1571(71)90022-7
17
Olvera-Gonzalez E, D. Alaniz-Lumbreras, R. IvanovTsonchev, J. Villa-Hernández, C. Olvera-Olvera, E. González-Ramírez, and V. Castaño. 2013a. Intelligent lighting system for plant growth and development. Comput Electron Agric. 92:48-53.
10.1016/j.compag.2012.11.012
18
Olvera-González E, D. Alaniz-Lumbreras, R. IvanovTsonchev, J. Villa-Hernández, I. Rosa-Vargas, I. LópezCruz, and A. Lara-Herrera. 2013b. Chlorophyll fluorescence emission of tomato plants as a response to pulsed light based LEDs. Plant Growth Regul. 69:117-123.
10.1007/s10725-012-9753-8
19
Park, J.E., Y.G. Park, B.R. Jeong, and S.J. Hwang. 2013. Growth of lettuce in closed-type plant production system as affected by light intensity and photoperiod under influence of white LED light. Protected Horticulture and Plant Factory 22:228-233.
10.12791/KSBEC.2013.22.3.228
20
Saebo A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult. 41:177-185.
10.1007/BF00051588
21
Samuolienė, G., R. Sirtautas, A. Brazaitytė, J. Sakalauskaitė, S. Sakalauskienė, and P. Duchovskis. 2011. The impact of red and blue light-emitting diode illumination on radish physiological indices. Central Eur. J. Biol. 6:821-828.
10.2478/s11535-011-0059-z
22
Savvides A., D. Fanourakis, and W. van Leperen. 2012. Coordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Exp. Bot. 63:1135-1143.
10.1093/jxb/err34822121201PMC3276089
23
Son K.H., J.H. Park, D. Kim, and M.M. Oh. 2012. Leaf shape, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J. Hortic. Sci. Technol. 30:664-672.
10.7235/hort.2012.12063
24
Son K.H., and M.M. Oh. 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic. Environ. Biotechnol. 56:639-653.
10.1007/s13580-015-1064-3
25
Son, K.H., Y.M. Jeon, and M.M. Oh. 2016. Application of Supplementary White and Pulsed Light-emitting Diodes to Lettuce Grown in a Plant Factory with Artificial Lighting. Hortic. Environ. Biotechnol. 57:560-572.
10.1007/s13580-016-0068-y
26
Taiz L., and E. Zeiger. 1991. Plant physiology. 1st ed., 179-264. Benjamin Cummings Publishing Co. New York.
27
Tamulaitis G, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novickovas, and A. Zukauskas. 2005. High-power light-emitting diode based facility for plant cultivation. J. Phys. D Appl Phys 38:293-3187.
10.1088/0022-3727/38/17/S20
28
US Department of Energy 2011. Solid-state lighting research and development: multi year program plan (Fig. 3.4), p. 130.
29
XiaoYing, L., G. ShiRong, X. ZhiGang, J. XueLei, and T. Tezuka. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of lightemitting diodes. HortScience 46:217-221.
10.21273/HORTSCI.46.2.217
30
Yoneda K, and Y. Mori. 2004 Method of cultivating plant and illuminator for cultivating plant. European Patent Ofce. EP1374665A1.
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Protected Horticulture and Plant Factory
  • Journal Title(Ko) :시설원예ㆍ식물공장
  • Volume : 26
  • No :2
  • Pages :123-132
  • Received Date : 2017-03-28
  • Revised Date : 2017-04-17
  • Accepted Date : 2017-04-25